scholarly journals 5G IoT Industry Verticals and Network Requirements

Author(s):  
Massimo Condoluci ◽  
Maria A. Lema ◽  
Toktam Mahmoodi ◽  
Mischa Dohler

The effective provisioning of industry verticals over the next-to-come 5G systems opens novel business opportunities for telco operators especially when considering the integration of Internet of Things (IoT) devices as enablers of business cases based on remote sensing and control. This chapter highlights the main features of IoT verticals with particular attention on healthcare, smart cities, industry automation and entertainment business cases. The aim of this Chapter is to derive the requirements such IoT verticals pose in terms of design features to be considered in the standardization of 5G systems. This chapter presents the state of the art on the contribution from the research community and standardization bodies to address the 5G design characteristics with particular attention to the features enabling a proper management of IoT-oriented business cases.

Author(s):  
Massimo Condoluci ◽  
Maria A. Lema ◽  
Toktam Mahmoodi ◽  
Mischa Dohler

The effective provisioning of industry verticals over the next-to-come 5G systems opens novel business opportunities for telco operators especially when considering the integration of Internet of Things (IoT) devices as enablers of business cases based on remote sensing and control. This chapter highlights the main features of IoT verticals with particular attention on healthcare, smart cities, industry automation and entertainment business cases. The aim of this Chapter is to derive the requirements such IoT verticals pose in terms of design features to be considered in the standardization of 5G systems. This chapter presents the state of the art on the contribution from the research community and standardization bodies to address the 5G design characteristics with particular attention to the features enabling a proper management of IoT-oriented business cases.


Internet of Things (IoT) is efficiently plays vital role in development of several sectors by offering many opportunities to grow the economy and improve the life standard through connecting billions of “Things” which provides business opportunities in different sectors and encounter many technical and application challenges. This paper emphasizes the role of Dynamic bandwidth allocation and protocols standards in various IoT sectors such as healthcare, education, agriculture, industrial, transportation, smart cities etc., and focuses on the challenges in providing uninterrupted bandwidth to all IoT devices with existing infrastructure, which depends on standardized protocols and network devices to establish connection with heterogeneous IoT devices. This paper covers Enhanced Dynamic Bandwidth Techniques, protocol standards and policies in IoT network technologies to Improve QoS in IoT devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chao Huang ◽  
Shah Nazir

With the passage of time, the world population is growing. Proper utilization of resources and other devices is tremendously playing an important role to easily examine, manage, and control the resources of the Internet of Things (IoT) in the smart city. Research in the field of IoT has revolutionized the services mostly in smart cities. In the smart city, the applications of IoT are utilized without human involvement. Diverse IoT devices are connected with each other and communicate for different tasks. With the existence of a huge number of IoT devices in the forthcoming years, the chances of privacy breach and information leakage are increasing. Billions of devices connected on IoT producing huge volume of data bound to cloud for processing, management, and storage. Sending of whole data to the cloud might create risk of security and privacy. Various needs of the smart city should be considered for both urgent and effective solutions to support requirements of the growing population. On the other side of rising technology, the IoT evolution has massively produced diverse research directions for the smart city. Keeping in view the use cases of the smart city, the proposed study presents the analytic network process (ANP) for evaluating smart cities. The approach of ANP works well in the situation of complexity, and vagueness exists among the available alternatives. The experimental results of the planned approach show that the approach is effective for evaluating the smart cities for IoT based on the use cases.


Author(s):  
Joost Alleblas ◽  
Steven Dorrestijn

What is the meaning of the ‘care of the self’ in Sensor Societies such as Singapore, where discipline and control seem to come first? Assessing sensoring and behaviour control in Smart Cities, Michel Foucault’s pivotal work on surveillance and power is still highly relevant. Applying this work on surveillance studies also needs to take into consideration Foucault’s later work on the care of the self, as well as revisit his work on power. This amounts to a framework of surveillance pulled apart and inside-out: from top-down hierarchical surveillance to lateral surveillance among people, and even to self-surveillance. Interwoven with this theoretical development is a reportage about the experience of walking the streets of Singapore with an eye to emerging forms of self-care in this situation of ubiquitous surveillance.


2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Claudia Campolo ◽  
Giacomo Genovese ◽  
Antonio Iera ◽  
Antonella Molinaro

Several Internet of Things (IoT) applications are booming which rely on advanced artificial intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart factories. Although the traditional approach is to deploy such compute-intensive algorithms into the centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer devices paves the way for having the intelligence pervasively spread along the cloud-to-things continuum. The take off of such a promising vision may be hurdled by the resource constraints of IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware platforms. In this paper, we propose a solution for the AI distributed deployment at the deep edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices, and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the pressure on constrained devices that are solicited by multiple parties interested in accessing their generated data and inference, and (ii) and targeting interoperability among AI-powered platforms. A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed solution.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


2020 ◽  
Vol 12 (14) ◽  
pp. 5595 ◽  
Author(s):  
Ana Lavalle ◽  
Miguel A. Teruel ◽  
Alejandro Maté ◽  
Juan Trujillo

Fostering sustainability is paramount for Smart Cities development. Lately, Smart Cities are benefiting from the rising of Big Data coming from IoT devices, leading to improvements on monitoring and prevention. However, monitoring and prevention processes require visualization techniques as a key component. Indeed, in order to prevent possible hazards (such as fires, leaks, etc.) and optimize their resources, Smart Cities require adequate visualizations that provide insights to decision makers. Nevertheless, visualization of Big Data has always been a challenging issue, especially when such data are originated in real-time. This problem becomes even bigger in Smart City environments since we have to deal with many different groups of users and multiple heterogeneous data sources. Without a proper visualization methodology, complex dashboards including data from different nature are difficult to understand. In order to tackle this issue, we propose a methodology based on visualization techniques for Big Data, aimed at improving the evidence-gathering process by assisting users in the decision making in the context of Smart Cities. Moreover, in order to assess the impact of our proposal, a case study based on service calls for a fire department is presented. In this sense, our findings will be applied to data coming from citizen calls. Thus, the results of this work will contribute to the optimization of resources, namely fire extinguishing battalions, helping to improve their effectiveness and, as a result, the sustainability of a Smart City, operating better with less resources. Finally, in order to evaluate the impact of our proposal, we have performed an experiment, with non-expert users in data visualization.


2021 ◽  
Vol 13 (9) ◽  
pp. 4716
Author(s):  
Moustafa M. Nasralla

To develop sustainable rehabilitation systems, these should consider common problems on IoT devices such as low battery, connection issues and hardware damages. These should be able to rapidly detect any kind of problem incorporating the capacity of warning users about failures without interrupting rehabilitation services. A novel methodology is presented to guide the design and development of sustainable rehabilitation systems focusing on communication and networking among IoT devices in rehabilitation systems with virtual smart cities by using time series analysis for identifying malfunctioning IoT devices. This work is illustrated in a realistic rehabilitation simulation scenario in a virtual smart city using machine learning on time series for identifying and anticipating failures for supporting sustainability.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 552 ◽  
Author(s):  
Rocksan Choi ◽  
SeungGwan Lee ◽  
Sungwon Lee

In our modern world, many Internet of Things (IoT) technologies are being researched and developed. IoT devices are currently being used in many fields. IoT devices use Wi-Fi and Bluetooth, however, communication distance is short and battery consumption is high. In areas such as smart cities and smart farms, IoT technology is needed to support a wide coverage with low power consumption. Low Power Wide Area (LPWA), which is a transmission used in IoT supporting a wide area with low power consumption, has evolved. LPWA includes Long Range (LoRa), Narrowband (NB-IoT), and Sigfox. LoRa offers many benefits as it communicates the longest distances, is cheap and consumes less battery. LoRa is used in many countries and covers a range of hundreds of square kilometers (km2) with a single gateway. However, if there are many obstacles to smart cities and smart farms, it causes communication problems. This paper proposes two (2) solutions to this problem: the relay method which is a multi-hop method and the Automatic Repeat Request (ARQ) system that detects packet loss in real-time and requests retransmission for LoRa. In this study, the actual performance of LoRa in the problematic environment was measured and the proposed method was applied. It was confirmed that the transmission rate of LoRa dropped when there were many obstacles such as trees. To use LoRa in a smart farm with a lot of space, multi-hop was observed to be better. An ARQ system is needed to compensate for the unexpected drop in the forward rate due to the increase in IoT devices. This research focused on reliability, however, additional network methods and automatic repeat request (ARQ) systems considering battery time should be researched in symmetry. This study covers the interdisciplinary field of computer science and wireless low power communication engineering. We have analyzed the LoRa/LoRaWAN technology in an experimental approach, which has been somewhat less studied than cellular network or WiFi technology. In addition, we presented and improved the performance evaluation results in consideration of various local and climatic environments.


Sign in / Sign up

Export Citation Format

Share Document