Bioinspired Inference System for MR Image Segmentation and Multiple Sclerosis Detection

2021 ◽  
Vol 12 (3) ◽  
pp. 37-57
Author(s):  
Hakima Zouaoui ◽  
Abdelouahab Moussaoui

Multiple sclerosis (MS) is a chronic autoimmune and inflammatory disease affecting the central nervous system (CNS). Magnetic resonance imaging (MRI) provides sufficient imaging contrast to visualize and detect MS lesions, particularly those in the white matter (WM). A robust and precise segmentation of WM lesions from MRI provide essential information about the disease status and evolution. The proposed FPSOPCM segmentation algorithm included an initial segmentation step using fuzzy particle swarm optimization (FPSO). After extraction of WM, atypical data (outliers) is eliminated using possibilistic C-means (PCM) algorithm, and finally, a Mamdani-type fuzzy model was applied to identify MS. The objective of the work presented in this paper is to obtain an improved accuracy in segmentation of MR images for MS detection.

2020 ◽  
Vol 9 (5) ◽  
pp. 1450 ◽  
Author(s):  
Alice Laroni ◽  
Antonio Uccelli

Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system, which leads, in many cases, to irreversible disability. More than 15 disease-modifying treatments (DMTs) are available for the treatment of MS. Clinical activity or activity at magnetic resonance imaging (MRI) are now used to assess the efficacy of DMTs, but are negative prognostic factors per se. Therefore, a biomarker permitting us to identify patients who respond to treatment before they develop clinical/radiological signs of MS activity would be of high importance. The number of circulating CD56bright natural killer (NK) cells may be such a biomarker. CD56bright NK cells are a regulatory immune population belonging to the innate immune system. The number of CD56bright NK cells increases upon treatment with interferon-beta, alemtuzumab, dimethyl fumarate, after autologous hematopoietic stem cell transplantation, and is higher in those who respond to fingolimod. In some cases, an increased number of CD56bright NK cells is associated with an increase in their regulatory function. In the current review, we will evaluate the known effect on CD56bright NK cells of DMTs for MS, and will discuss their possible role as a biomarker for treatment response in MS.


2020 ◽  
Vol 6 (1) ◽  
pp. 16-30
Author(s):  
Somayeh Raiesdana ◽  

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentative. Objectives: To develop an automated non-subjective method for the detection and quantification of MS lesions. Materials & Methods: This paper focuses on the automatic detection and classification of MS lesions in brain MRI images. Two datasets, one simulated and the other one recorded in hospital, are utilized in this work. A novel hybrid algorithm combining image processing and machine learning techniques is implemented. To this end, first, intricate morphological patterns are extracted from MRI images via texture analysis. Then, statistical textures-based features are extracted. Afterward, two supervised machine learning algorithms, i.e., the Hidden Markov Model (HMM) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are employed within a hybrid platform. The hybrid system makes decisions based on ensemble learning. The stacking technique is used to apply predictions from both models o train a perceptron as a decisive model. Results: Experimental results on both datasets indicate that the proposed hybrid method outperforms HMM and ANFIS classifiers with reducing false positives. Furthermore, the performance of the proposed method compared with the state-of-the-art methods, was approved. Conclusion: Remarkable results of the proposed method motivate advanced detection systems employing other MRI sequences and their combination.


2021 ◽  
Vol 1 (4) ◽  
pp. 416-428
Author(s):  
Vijay Anant Athavale ◽  

Gadolinium (Gd) is a based contrast agent is used for Magnetic Resonance Imaging (MRI). In India, gadobutrolhas been is approved for MRI of the Central Nervous System (CNS), liver, kidneys, and breast. It has been noted in several studies that the accumulation of gadolinium occurs in different structures in the brain. Patients with Multiple Sclerosis (MS) are regularly followed up with MRI scans and MRI with contrast enhancement is the most common method of distinguishing new-onset pathological changes. Developments in technology and methods in artificial intelligence have shown that there is reason to map out the X-ray technician’s work with examinations and medicines administered to patients may be altered to prevent the accumulation of gadolinium.


2000 ◽  
Vol 2 (2) ◽  
pp. 2-8
Author(s):  
Richard Ransohoff

Abstract The last decade has been an era of unprecedented progress in our understanding of multiple sclerosis (MS). MS is now considered a destructive process of the central nervous system, initiated by inflammatory demyelination but including prominent axonal pathology. This new knowledge has been acquired from new imaging techniques and traditional histopathologic study. New mechanisms of myelin destruction have been uncovered, and hypothetical new therapies for MS include neuroprotectants. Serial gadolinium-enhanced magnetic resonance imaging (MRI) scans reveal MS as a continuously active process. Brain and spinal cord atrophy, defined by MRI, correlate closely with clinical state. MR imaging techniques therefore are considered the standard tools for monitoring disease activity and severity. These efforts have produced improved therapy for patients with MS. Two classes of agents, interferon beta and glatiramer acetate, have been approved by the US Food and Drug Administration for use. A major challenge for clinicians is to provide early diagnosis and determine appropriate treatment. New neuroprotective and anti-inflammatory drugs are on the horizon.


2003 ◽  
Vol 9 (5) ◽  
pp. 467-471 ◽  
Author(s):  
L ME Grimaldi ◽  
A Pincherle ◽  
F Martinelli-Boneschi ◽  
M Filippi ◽  
F Patti ◽  
...  

We amplified sequences of the Chlamydia pneumoniae (C P) major-outer membrane protein in the cerebrospinal fluid (CSF) from 23 of 107 (21.5%) relapsing-remitting or secondary progressive multiple sclerosis (MS) patients and two of 77 (2.6%) patients with other neurological diseases (OND) (P =0.00022). C P+ patients showed magnetic resonance imaging (MRI) evidence of more active disease (P =0.02) compared to CP-MS patients and tended to have an anticipation of age at disease onset (32.39-12 versus 28.59-10 years; P =ns) causing a longer disease duration (7.59-5 versus 4.49-4 years; P =0.016) at the time of clinical evaluation. These findings, although indirectly, suggest that C P infection of the central nervous system (C NS) might affect disease course in a subgroup of MS patients.


2017 ◽  
Vol 16 (03) ◽  
pp. 185-191
Author(s):  
Brenda Banwell ◽  
Anusha Yeshokumar

AbstractThis review highlights the most common presentations of demyelination of the central nervous system (CNS, termed acquired demyelinating syndrome) in children, the difficulty in determining whether the first episode represents a monophasic/transient illness or relapsing disease, and the potential underlying etiologies that must be considered, including multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and disorders associated with antibodies to myelin oligodendrocyte glycoprotein (MOG) antibodies. The initial clinical and magnetic resonance imaging (MRI) features, as well as those observed over time, are highlighted, emphasizing the distinct and overlapping features of each of these disorders.


Author(s):  
Jacob M. Miller ◽  
Jeremy T. Beales ◽  
Matthew D. Montierth ◽  
Farren B. Briggs ◽  
Scott F. Frodsham ◽  
...  

Multiple sclerosis (MS) is an immune-mediated, demyelinating disease of the central nervous system. In this study, an MS cohort and healthy controls were stratified into Caucasian and African American groups. Patient hematological profiles—composed of complete blood count (CBC) and complete metabolic panel (CMP) test values—were analyzed to identify differences between MS cases and controls and between patients with different MS subtypes. Additionally, random forest models were used to determine the aggregate utility of common hematological tests in determining MS disease status and subtype. The most significant and relevant results were increased bilirubin and creatinine in MS cases. The random forest models achieved some success in differentiating between MS cases and controls (AUC values: 0.725 and 0.710, respectively) but were not successful in differentiating between subtypes. However, larger samples that adjust for possible confounding variables, such as treatment status, may reveal the value of these tests in differentiating between MS subtypes.


2019 ◽  
Author(s):  
Jeske van Pamelen ◽  
Lynn van Olst ◽  
Andries E Budding ◽  
Helga E de Vries ◽  
Leo H Visser ◽  
...  

BACKGROUND Immunological factors are the key to the pathogenesis of multiple sclerosis (MS). Conjointly, environmental factors are known to affect MS disease onset and progression. Several studies have found that the intestinal microbiota in MS patients differs from that of control subjects. One study found a trend toward lower species richness in patients with active disease versus in patients in remission. The microbiota plays an important role in shaping the immune system. Recent studies suggest the presence of an association between the gut microbiota and inflammatory pathways in the central nervous system. However, the function of this brain-immune-intestine axis and its possible value for predicting treatment effect in MS patients is currently unknown. OBJECTIVE Our goal is to examine if the changes in gut and oral microbiota and simultaneous changes in the immune response are a predictor for the treatment response in subjects with active relapsing-remitting MS (RRMS) who are being treated with oral cladribine. METHODS This is a prospective, observational, multicenter study. Eligible subjects are patients with RRMS, between the ages of 18 and 55 years, who will start treatment with oral cladribine. Patients who used probiotics 1 month prior to the start of oral cladribine will be excluded. At baseline (ie, before start) and after 3, 12, and 24 months, the Expanded Disability Status Scale (EDSS) score will be assessed and fecal, oral, and blood samples will be collected. Also, subjects will be asked to register their food intake for 7 consecutive days following the visits. After 24 months, a magnetic resonance imaging (MRI) assessment of the brain will be performed. Responders are defined as subjects without relapses, without progression on the EDSS, and without radiological progression on MRI. RESULTS Inclusion started in January 2019. A total of 30 patients are included at the moment. The aim is to include 80 patients from 10 participating centers during a period of approximately 24 months. Final results are expected in 2024. CONCLUSIONS The results of the BIA Study will contribute to precision medicine in patients with RRMS and will contribute to a better understanding of the brain-immune-intestine axis. INTERNATIONAL REGISTERED REPORT DERR1-10.2196/16162


2020 ◽  
Vol 20 (26) ◽  
pp. 2391-2403
Author(s):  
Omar Deeb ◽  
Maisa Nabulsi

: Growing concern about neurodegenerative diseases is becoming a global issue. It is estimated that not only will their prevalence increase but also morbidity and health burden will be concerning. Scientists, researchers and clinicians share the responsibility of raising the awareness and knowledge about the restricting and handicapping health restrains related to these diseases. : Multiple Sclerosis (MS), as one of the prevalent autoimmune diseases, is characterized by abnormal regulation of the immune system that periodically attacks parts of the nervous system; brain and spinal cord. Symptoms and impairments include weakness, numbness, visual problems, tingling pain that are quietly variable among patients. : Amyotrophic Lateral Sclerosis (ALS) is another neurodegenerative disease that is characterized by the degeneration of motor neurons in the brain and spinal cord. Unlike MS, symptoms begin with muscle weakness and progress to affect speech, swallowing and finally breathing. Despite the major differences between MS and ALS, misdiagnosis is still influencing disease prognosis and patient’s quality of life. : Diagnosis depends on obtaining a careful history and neurological examination as well as the use of Magnetic Resonance Imaging (MRI), which are considered challenging and depend on the current disease status in individuals. : Fortunately, a myriad of treatments is available now for MS. Most of the cases are steroid responsive. Disease modifying therapy is amongst the most important set of treatments. : In ALS, few medications that slow down disease progression are present. The aim of this paper is to summarize what has been globally known and practiced about MS and ALS, as they are currently classified as important growing key players among autoimmune diseases. In terms of treatments, it is concluded that special efforts and input should be directed towards repurposing of older drugs and on stem cells trials. As for ALS, it is highlighted that supportive measurements and supplementary treatments remain essentially needed for ALS patients and their families. On the other hand, it is noteworthy to clarify that the patient-doctor communication is relatively a cornerstone in selecting the best treatment for each MS patient.


Sign in / Sign up

Export Citation Format

Share Document