Structural Changes of UHV Deposited Titanium Thin Films in Presence of Oxygen Flow and Temperature

2011 ◽  
Vol 110-116 ◽  
pp. 1094-1098
Author(s):  
Haleh Kangarlou ◽  
Mehdi Bahrami Gharahasanloo ◽  
Akbar Abdi Saray ◽  
Reza Mohammadi Gharabagh

Ti films of same thickness, and near normal deposition angle, and same deposition rate were deposited on glass substrates, at room temperature, under UHV conditions. Different annealing temperatures as 393K, 493K and 593K with uniform 8 cm3/sec, oxygen flow, were used for producing titanium oxide layers. Their nanostructures were determined by AFM and XRD methods. Roughness of the films changed due to annealing process. The gettering property of Ti and annealing temperature can play an important role in the nanostructure of the films.

1981 ◽  
Vol 7 ◽  
Author(s):  
B.S. Elman ◽  
H. Mazurek ◽  
M.S. Dresselhaus ◽  
G. Dresselhaus

ABSTRACTRaman spectroscopy is used in a variety of ways to monitor different aspects of the lattice damage caused by ion implantation into graphite. Particular attention is given to the use of Raman spectroscopy to monitor the restoration of lattice order by the annealing process, which depends critically on the annealing temperature and on the extent of the original lattice damage. At low fluences the highly disordered region is localized in the implanted region and relatively low annealing temperatures are required, compared with the implantation at high fluences where the highly disordered region extends all the way to the surface. At high fluences, annealing temperatures comparable to those required for the graphitization of carbons are necessary to fully restore lattice order.


2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Faheem Amin ◽  
Syedah Afsheen Zahra ◽  
Muhammad Sultan ◽  
Sajjad Hussain Mirza ◽  
Fahad Azad

Bilayer thin films of Ge/CdS have been deposited on a glass substrate through thermal evaporation method. The obtained Ge/CdS samples were annealed at temperatures up to 400°C to observe the resulting effect on the structural changes in the film. The bandgap of the annealed films was found to increase with increasing annealing temperature which can be attributed to the increased interlayer diffusion. The interlayer diffusion was found to take effect above a temperature of 300°C which was confirmed by the Rutherford backscattering technique. Complementary XPS was done to investigate the surface stoichiometry of the bilayers.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 786
Author(s):  
Yu-Cheng Hsiao ◽  
Fan-Bean Wu

Nickel–ruthenium–phosphorus, Ni–Ru–P, alloy coatings were fabricated by magnetron dual-gun co-sputtering from Ni–P alloy and Ru source targets. The composition variation and related microstructure evolution of the coatings were manipulated by the input power modulation. The as-prepared Ni–Ru–P alloy coatings with a Ru content less than 12.2 at.% are amorphous/nanocrystalline, while that with a high Ru content of 52.7 at.% shows a feature of crystallized Ni, Ru, and Ru2P mixed phases in the as-deposited state. The crystallized phases for high Ru content Ni–Ru–P coatings are stable against annealing process up to 600 °C. By contrast, the amorphous/nanocrystalline Ni–Ru–P thin films withstand a heat-treated temperature up to 475 °C and then transform into Ni(Ru) and NixPy crystallized phases at an annealing temperature over 500 °C. The surface hardness of the Ni–Ru–P films ranges from 7.2 to 12.1 GPa and increases with the Ru content and the annealing temperatures. A highest surface hardness is found for the 550 °C annealed Ni–Ru–P with a high Ru content of 52.7 at.%. The Ecorr values of the heat-treated amorphous/nanocrystalline Ni–Ru–P coatings become more negative, while with a high Ru content over 27.3 at.% the Ni–Ru–P films show more negative Ecorr values after annealing process. The pitting corrosion feature is observed for the amorphous/nanocrystalline Ni–Ru–P coatings when tested in a 3.5M NaCl solution. Severer pitting corrosion is found for the 550 °C annealed Ni–Ru–P coatings. The development of Ni(Ru) and NixPy crystallized phases during annealing is responsible for the degeneration of corrosion resistance.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
H. Abdullah ◽  
S. Habibi

CuInSe2(CIS) thin films are successfully prepared by electron beam evaporation. Pure Cu, In, and Se powders were mixed and ground in a grinder and made into a pellet. The pallets were deposited via electron beam evaporation on FTO substrates and were varied by varying the annealing temperatures, at room temperature, 250°C, 300°C, and 350°C. Samples were analysed by X-ray diffractometry (XRD) for crystallinity and field-emission scanning electron microscopy (FESEM) for grain size and thickness. I-V measurements were used to measure the efficiency of the CuInSe2/ZnS solar cells. XRD results show that the crystallinity of the films improved as the temperature was increased. The temperature dependence of crystallinity indicates polycrystalline behaviour in the CuInSe2films with (1 1 1), (2 2 0)/(2 0 4), and (3 1 2)/(1 1 6) planes at 27°, 45°, and 53°, respectively. FESEM images show the homogeneity of the CuInSe2formed. I-V measurements indicated that higher annealing temperatures increase the efficiency of CuInSe2solar cells from approximately 0.99% for the as-deposited films to 1.12% for the annealed films. Hence, we can conclude that the overall cell performance is strongly dependent on the annealing temperature.


2012 ◽  
Vol 184 ◽  
pp. 307-312 ◽  
Author(s):  
A. Kazakewitsch ◽  
Werner Riehemann

Aluminum-matrix-nanoparticle-composites were produced by ball milling of micro scale aluminum powder in air atmosphere with subsequent consolidation by hot extrusion and also additional hot swaging. They were investigated in this condition after step by step isochronal annealing with successive increasing annealing temperature and quenching into water to room temperature. The material was investigated by amplitude dependent damping, hardness and density measurements, all at room temperature. For all measured amplitude dependent internal friction (ADIF) curves the damping increases with increasing strain amplitude. After some annealing treatments a knee occurs in the medium strain amplitude region of these curves. Moreover between annealing temperatures from 360°C to 480°C the strain dependent damping becomes a maximum, i.e. a peak in the ADIF curves occurs. Other ADIF curves of quenched and fatigued material show characteristic peaks that can be attributed to individual single cracks. It is shown that all these effects are due to the formation, opening and compression of cracks present in the sample or created by thermally exerted stresses.


2006 ◽  
Vol 527-529 ◽  
pp. 819-822
Author(s):  
Fabio Bergamini ◽  
Shailaja P. Rao ◽  
Antonella Poggi ◽  
Fabrizio Tamarri ◽  
Stephen E. Saddow ◽  
...  

This work reports the realization and characterization of 4H-SiC p+/n diodes with the p+ anodes made by Al+ ion implantation at 400°C and post-implantation annealing in silane ambient in a cold-wall low-pressure CVD reactor. The Al depth profile was almost box shaped with a height of 6×1019 cm-3 and a depth of 160 nm. Implant anneals were performed in the temperature range from 1600°C to 1700°C. As the annealing temperature was increased, the silane flow rate was also increased. This annealing process yields a smooth surface with a roughness of the implanted area of 1.7 - 5.3 nm with increasing annealing temperature. The resistivity of the implanted layer, measured at room temperature, decreased for increasing annealing temperatures with a minimum value of 1.4 0-cm measured for the sample annealed at 1700°C. Considering only the current-voltage characteristic of a diode that could be modeled as an abrupt p/n junction within the frame of the Shockley theory, the diode process yield and the diode leakage current decreased, respectively, from 93% to 47% and from 2×10-7 Acm-2 to 1×10-8 Acm-2 at 100 V reverse bias, for increasing post implantation annealing temperature.


2020 ◽  
Vol 233 ◽  
pp. 05006
Author(s):  
A.F. Cardoso ◽  
A.A. Bassou ◽  
V.S. Amaral ◽  
J.R. Fernandes ◽  
P.B. Tavares

Thin films of the Lu-Fe-O system were deposited by aerosol assisted MOCVD on silica glass substrates. Hexagonal h-LuFeO3, garnet Lu3Fe5O12, perovskite o-LuFeO3 or hematite Fe2O3 phases were obtained, depending on the thermodynamic deposition conditions or post annealing temperature. Magnetic measurements confirm the ferromagnetic behaviour at room temperature of the thin films with garnet phase. An indirect bandgap of 1.78 eV was measured.


2021 ◽  
Author(s):  
Pandong Lin ◽  
Junfeng Nie ◽  
Meidan Liu

Abstract As the basic material in reactor pressure vessel (RPV), Fe endures amounts of irradiation in the entire lifetime. Many irradiation defects such as dislocation loop are generated which affect the macroscopic mechanical properties. In this paper, we use the molecular dynamics method to investigate the effect of annealing temperature on dislocation loop absorption and evolution. The annealing process contains four steps: At first, the temperature increases from room temperature (300K) to annealing temperature. The annealing temperature is set as 600K, 700K, 800K, 900K and 1000K respectively. Then the system maintains at annealing temperature for adequate time to evolve. After that, the temperature recovers to room temperature. Finally, the system evolves at room temperature to get the final configuration. The diameters of 1/2 <111> and <100> dislocation loop are 5.1 nm and 1.2 nm, respectively. The dimension of simulation cell is defined as 29.6nm × 20.2nm × 21.0nm with 1080455 atoms. Based on annealing simulation, we could obtain and analyze the microstructure evolution of dislocation loop. Apart from that, we also investigate the effect of annealing rate (4.29 K/ps, 6.00 K/ps, 10.00 K/ps and 30.00 K/ps) on the number of defect atoms and dislocation length during annealing process. Here under periodic boundary conditions the system is allowed to relax in all three directions independently. Results show that temperature has significant impact on the absorption and evolution of dislocation loop. However, temperature can improve the maximum values of defect atoms and accelerate absorption process from stage II to stage I when temperature is 900 K and 1000 K. In contrast, annealing rate has negligible impact on whether the number of defect atoms or dislocation length during the absorption and evolution of dislocation loop. These results are meaning for understanding the temperature effect on dislocation loop.


2011 ◽  
Vol 306-307 ◽  
pp. 535-538 ◽  
Author(s):  
Sheng Li Li ◽  
Xing Dong Peng ◽  
Yu Chen

To study the transmutation of organization and texture on direct annealing process of hot-rolled plate. Different annealing experiments were done in the lab. The annealed samples are from steel grade of SPHC. To check the organization of the annealed samples by optical microscopy, to measure grain size by Micro-image Analysis & process software. To measure the mechanical properties by the room temperature tensile test. To check AlN by TEM and EDX.To measure texture by texture measuring instrument, and the data was collected on a computer, using two-step calculation of ODF, measured with constant 45° section of graph. When annealing temperature of the samples reaches 875 °C or more, a relatively low strength , high n value, and high r value is received, but if the holding time is longer, grain coarsening occurs at the time,so the annealing temperature is not more than 925°C.When annealing temperature reaches 875 °C, AlN increased slightly, and the texture is not obvious.


Sign in / Sign up

Export Citation Format

Share Document