scholarly journals Thermal Stability, Hardness, and Corrosion Behavior of the Nickel–Ruthenium–Phosphorus Sputtering Coatings

Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 786
Author(s):  
Yu-Cheng Hsiao ◽  
Fan-Bean Wu

Nickel–ruthenium–phosphorus, Ni–Ru–P, alloy coatings were fabricated by magnetron dual-gun co-sputtering from Ni–P alloy and Ru source targets. The composition variation and related microstructure evolution of the coatings were manipulated by the input power modulation. The as-prepared Ni–Ru–P alloy coatings with a Ru content less than 12.2 at.% are amorphous/nanocrystalline, while that with a high Ru content of 52.7 at.% shows a feature of crystallized Ni, Ru, and Ru2P mixed phases in the as-deposited state. The crystallized phases for high Ru content Ni–Ru–P coatings are stable against annealing process up to 600 °C. By contrast, the amorphous/nanocrystalline Ni–Ru–P thin films withstand a heat-treated temperature up to 475 °C and then transform into Ni(Ru) and NixPy crystallized phases at an annealing temperature over 500 °C. The surface hardness of the Ni–Ru–P films ranges from 7.2 to 12.1 GPa and increases with the Ru content and the annealing temperatures. A highest surface hardness is found for the 550 °C annealed Ni–Ru–P with a high Ru content of 52.7 at.%. The Ecorr values of the heat-treated amorphous/nanocrystalline Ni–Ru–P coatings become more negative, while with a high Ru content over 27.3 at.% the Ni–Ru–P films show more negative Ecorr values after annealing process. The pitting corrosion feature is observed for the amorphous/nanocrystalline Ni–Ru–P coatings when tested in a 3.5M NaCl solution. Severer pitting corrosion is found for the 550 °C annealed Ni–Ru–P coatings. The development of Ni(Ru) and NixPy crystallized phases during annealing is responsible for the degeneration of corrosion resistance.

2011 ◽  
Vol 110-116 ◽  
pp. 1094-1098
Author(s):  
Haleh Kangarlou ◽  
Mehdi Bahrami Gharahasanloo ◽  
Akbar Abdi Saray ◽  
Reza Mohammadi Gharabagh

Ti films of same thickness, and near normal deposition angle, and same deposition rate were deposited on glass substrates, at room temperature, under UHV conditions. Different annealing temperatures as 393K, 493K and 593K with uniform 8 cm3/sec, oxygen flow, were used for producing titanium oxide layers. Their nanostructures were determined by AFM and XRD methods. Roughness of the films changed due to annealing process. The gettering property of Ti and annealing temperature can play an important role in the nanostructure of the films.


1981 ◽  
Vol 7 ◽  
Author(s):  
B.S. Elman ◽  
H. Mazurek ◽  
M.S. Dresselhaus ◽  
G. Dresselhaus

ABSTRACTRaman spectroscopy is used in a variety of ways to monitor different aspects of the lattice damage caused by ion implantation into graphite. Particular attention is given to the use of Raman spectroscopy to monitor the restoration of lattice order by the annealing process, which depends critically on the annealing temperature and on the extent of the original lattice damage. At low fluences the highly disordered region is localized in the implanted region and relatively low annealing temperatures are required, compared with the implantation at high fluences where the highly disordered region extends all the way to the surface. At high fluences, annealing temperatures comparable to those required for the graphitization of carbons are necessary to fully restore lattice order.


2021 ◽  
Vol 871 ◽  
pp. 87-91
Author(s):  
Cai Tang ◽  
Jun Wen ◽  
Hui Ji Fan

The annealing process of an improved Q420 cold drawn tube was studied by using different annealing temperatures (430°C, 450°C, 470°C, 490°C and 510°C) with a same annealing holding time (3h). The effect of different annealing temperatures on the mechanical properties, microstructure and fracture features of the cold drawn tube was studied by means of tensile test, microstructure observation and scanning electron microscopy analysis. The results show that, annealing temperature has great influence on the strength and plasticity of the cold drawn tube. When the annealing temperature increased to 450°C, banded microstructure was mitigated and the pearlite is relatively dispersed. The tensile fracture morphology under the annealing temperature of 450°C has more dimples and deeper bremsstrahlung than other annealing temperatures. The best annealing process of the cold drawn tube was 450°C×3h. Under this annealing process, the cold drawn tube with good strength and toughness can be obtained.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012052
Author(s):  
K N Gunasekaran ◽  
D Balamurugan ◽  
M Babin ◽  
K J Barath Raj ◽  
S Arun

Abstract In this investigation, AA2024 alloy was welded by tungsten inert gas welding. Access the influence of pitting corrosion on TIG weld; the joints were heat-treated after welding with different techniques. Moreover, the corrosion test was carried out with 3.5% NaCl solution under different pH values such as pH:5, pH:7, and pH: 12. From the experimental results, the joint treated with solution treatment with pH: 7 showed high corrosion resistance than its counterparts.


2011 ◽  
Vol 117-119 ◽  
pp. 81-84
Author(s):  
Xi Ran Wang ◽  
Jing Wu ◽  
Xin Gang Hu

In this work, Fe-Zn coating on copper is obtained by electroless plating. The surface mor -phologies and composition of the coatings has been investigated using scanning electronic microscope (SEM) and energy dispersive spectroscopy(EDS). Corrosion behavior of Fe-Zn coating in3.5% NaCl solution is gaved a further insight. The impedance diagram indicates that corrosion resistance of coating is better. The open circuit potential of Fe-Zn coating is at about -1V. Self-corrosion potential of Fe-Zn coating in 3.5%NaCl solution shifts in the positive direction first and then shifts from -0.622V to -0.603V with increasing heat-treated temperature, while corresponding self-corrosion current decreases at first and then. increases Corrosion resistance of coating is the best when heat-treated temperature is 300°C.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1409
Author(s):  
Ofelia Durante ◽  
Cinzia Di Giorgio ◽  
Veronica Granata ◽  
Joshua Neilson ◽  
Rosalba Fittipaldi ◽  
...  

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250–1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.


2021 ◽  
Vol 28 (3) ◽  
pp. 440-449
Author(s):  
K. Bin Tayyab ◽  
A. Farooq ◽  
A. Ahmed Alvi ◽  
A. Basit Nadeem ◽  
K. M. Deen

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jingwei Zhao ◽  
Tao Wang ◽  
Fanghui Jia ◽  
Zhou Li ◽  
Cunlong Zhou ◽  
...  

AbstractIn the present work, austenitic stainless steel (ASS) 304 foils with a thickness of 50 µm were first annealed at temperatures ranging from 700 to 1100 ℃ for 1 h to obtain different microstructural characteristics. Then the effects of microstructural characteristics on the formability of ASS 304 foils and the quality of drawn cups using micro deep drawing (MDD) were studied, and the mechanism involved was discussed. The results show that the as-received ASS 304 foil has a poor formability and cannot be used to form a cup using MDD. Serious wrinkling problem occurs on the drawn cup, and the height profile distribution on the mouth and the symmetry of the drawn cup is quite non-uniform when the annealing temperature is 700 ℃. At annealing temperatures of 900 and 950 ℃, the drawn cups are both characterized with very few wrinkles, and the distribution of height profile, symmetry and mouth thickness are uniform on the mouths of the drawn cups. The wrinkling becomes increasingly significant with a further increase of annealing temperature from 950 to 1100 ℃. The optimal annealing temperatures obtained in this study are 900 and 950 ℃ for reducing the generation of wrinkling, and therefore improving the quality of drawn cups. With non-optimized microstructure, the distribution of the compressive stress in the circumferential direction of the drawn foils becomes inhomogeneous, which is thought to be the cause of the occurrence of localized deformation till wrinkling during MDD.


2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


Sign in / Sign up

Export Citation Format

Share Document