Research on the Imaging Mechanism of Additive Color of Fluorescent Ink-Jet Ink

2012 ◽  
Vol 262 ◽  
pp. 22-26 ◽  
Author(s):  
Xian Fu Wei ◽  
Shao Hong Gao ◽  
Bei Qing Huang ◽  
Wan Zhang

The formation of color images are generally divided into two methods: additive color imaging based on color light mixture and subtractive color imaging based on colorant mixture. Additive color imaging refers to the color image mixed by a certain percentage of the three primary color lights: red (R), green (G) and blue (B), such as LED display, cell phone screens, digital cameras and others. Subtractive color imaging refers to the color image generated by light mixture reflected by each colorant, due to some light of different wavelength in the white light separately absorbed by certain colorant after mixing a certain percentage of the three primary colorant: cyan (C), magenta (M) and yellow (Y). Inkjet, color laser printing, inkjet printing, etc. belong to the subtractive color imaging. Most commonly, printing also belongs to the subtractive color imaging. This thesis is based on the characteristics that fluorescent materials can produce colors under UV excitation, designing and preparing three fluorescent inkjet inks which can respectively produce red (R), green (G), blue (B) under UV light excitation, using inkjet printers to print color images, investigating the imaging mechanism of the additive color based on fluorescence inkjet printing, and observing the imaging results. The results show that color effect of monochrome image is good, and the color deviation is large after overlapping different colors.

Author(s):  
Haoran Li ◽  
Yujun Liang ◽  
Shiqi Liu ◽  
Weilun Zhang ◽  
Yanying Bi ◽  
...  

Highly-efficient and stable inorganic phosphors with high response to near-ultraviolet excitation are essential to the performance enhancement of the phosphor converted backlighting devices. Herein, highly-efficient green-emitting phosphors Sr4Al14O25:Ce,Tb (SAO:Ce3+,Tb3+) with...


1993 ◽  
Vol 20 (2) ◽  
pp. 228-235 ◽  
Author(s):  
Yean-Jye Lu ◽  
Xidong Yuan

Image analysis for traffic data collection has been studied throughout the world for more than a decade. A survey of existing systems shows that research was focused mainly on the monochrome image analysis and that the field of color image analysis was rarely studied. With the application of color image analysis in mind, this paper proposes a new algorithm for vehicle speed measurement in daytime. The new algorithm consists of four steps: (i) image input, (ii) pixel analysis, (iii) single image analysis, and (iv) image sequence analysis. It has three significant advantages. First, the algorithm can distinguish the shadows caused by moving vehicles outside the detection area from the actual vehicles passing through the area, which is a difficult problem for the monochrome image analysis technique to handle. Second, the algorithm significantly reduces the image data to be processed; thus only a personal computer is required without the addition of any special hardware. The third advantage is the flexible placement of detection spots at any position in the camera's field of view. The accuracy of the algorithm is also discussed. Key words: speed measurement, vehicle detection, image analysis, image processing, traffic control, traffic measurement and road traffic.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2018 ◽  
Vol 233 (2) ◽  
pp. 73-79 ◽  
Author(s):  
Dan Zhao ◽  
Fa-Xue Ma ◽  
Bao-Zhong Liu ◽  
Yun-Chang Fan ◽  
Xue-Feng Han ◽  
...  

AbstractSingle crystals of two cesium rare-earth molybdates CsLn(MoO4)2(Ln=Eu, Tb) have been prepared using the high temperature molten salt (flux) method. Single-crystal X-ray diffraction analyses reveal that they crystallize in the orthorhombic space groupPccm(No. 49) and features a 2D layer structure that is composed of [Ln(MoO4)2]∞and [Cs]∞layers. Under near-UV light excitation, emission spectrum of CsEu(MoO4)2consists of several sharp lines due to the characteristic electronic transitions of Eu3+ions, whereas CsTb(MoO4)2exhibits characteristic green emission of Tb3+ions.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4084
Author(s):  
Xin-Yu Zhao ◽  
Li-Jing Li ◽  
Lei Cao ◽  
Ming-Jie Sun

Digital cameras obtain color information of the scene using a chromatic filter, usually a Bayer filter, overlaid on a pixelated detector. However, the periodic arrangement of both the filter array and the detector array introduces frequency aliasing in sampling and color misregistration during demosaicking process which causes degradation of image quality. Inspired by the biological structure of the avian retinas, we developed a chromatic LED array which has a geometric arrangement of multi-hyperuniformity, which exhibits an irregularity on small-length scales but a quasi-uniformity on large scales, to suppress frequency aliasing and color misregistration in full color image retrieval. Experiments were performed with a single-pixel imaging system using the multi-hyperuniform chromatic LED array to provide structured illumination, and 208 fps frame rate was achieved at 32 × 32 pixel resolution. By comparing the experimental results with the images captured with a conventional digital camera, it has been demonstrated that the proposed imaging system forms images with less chromatic moiré patterns and color misregistration artifacts. The concept proposed verified here could provide insights for the design and the manufacturing of future bionic imaging sensors.


Author(s):  
Gaber Hassan ◽  
Khalid M. Hosny ◽  
R. M. Farouk ◽  
Ahmed M. Alzohairy

One of the most often used techniques to represent color images is quaternion algebra. This study introduces the quaternion Krawtchouk moments, QKrMs, as a new set of moments to represent color images. Krawtchouk moments (KrMs) represent one type of discrete moments. QKrMs use traditional Krawtchouk moments of each color channel to describe color images. This new set of moments is defined by using orthogonal polynomials called the Krawtchouk polynomials. The stability against the translation, rotation, and scaling transformations for QKrMs is discussed. The performance of the proposed QKrMs is evaluated against other discrete quaternion moments for image reconstruction capability, toughness against various types of noise, invariance to similarity transformations, color face image recognition, and CPU elapsed times.


2018 ◽  
Vol 924 ◽  
pp. 261-264
Author(s):  
Hrishikesh Das ◽  
Swapna Sunkari ◽  
Oener Akdik ◽  
Andrei Konstantinov ◽  
Krister Gumaelius ◽  
...  

The scanning of Silicon Carbide (SiC) epitaxy wafers for defects by ultraviolet (UV) laser or lamps is widely prevalent. In this work, we document the effects of UV light excitation on the SiC epitaxy material. An increase in background photoluminescence (PL) is observed after repeated scans. The effect of this increase on defect detection is shown. Optimal surface treatments to recover the material back to the original state are demonstrated. Further, some surface treatments are proposed which reduce the effect of the UV light excitation and prevent to a large extent the rise in background PL.


Author(s):  
Mohammadreza Hajiarbabi ◽  
Arvin Agah

Human skin detection is an important and challenging problem in computer vision. Skin detection can be used as the first phase in face detection when using color images. The differences in illumination and ranges of skin colors have made skin detection a challenging task. Gaussian model, rule based methods, and artificial neural networks are methods that have been used for human skin color detection. Deep learning methods are new techniques in learning that have shown improved classification power compared to neural networks. In this paper the authors use deep learning methods in order to enhance the capabilities of skin detection algorithms. Several experiments have been performed using auto encoders and different color spaces. The proposed technique is evaluated compare with other available methods in this domain using two color image databases. The results show that skin detection utilizing deep learning has better results compared to other methods such as rule-based, Gaussian model and feed forward neural network.


2018 ◽  
Vol 13 (3) ◽  
pp. 561-567
Author(s):  
Behzad Aliahmad ◽  
Aye Nyein Tint ◽  
Sridhar Poosapadi Arjunan ◽  
Priya Rani ◽  
Dinesh Kant Kumar ◽  
...  

Introduction: In clinical practice, both area and temperature of the ulcer have been shown to be effective in tracking the healing status of diabetes-related foot ulcer (DRFU). However, traditionally, the area of the DRFU is measured regardless of the temperature distribution. The current prospective, observational study used thermal imaging, as a more accurate tool, to measure both the area and the temperature of DRFU. We aimed to predict healing of DRFU using thermal imaging within the first 4 weeks of ulceration. Method: A pilot study was conducted where thermal and color images of 26 neuropathic DRFUs (11 healing vs 15 nonhealing) from individuals with type 1 or 2 diabetes were taken at the initial clinic visit (baseline), at week 2, and at week 4. The thermal images were segmented into isothermal patches to identify the wound boundary and area corresponding to temperature distribution. Five parameters were obtained: temperature of the wound bed, area of the isothermal patch of the wound bed, area of isothermal patch of periwound, number of isolated isothermal patches of the wound region, and physical wound bed area from color image. The ulcers were also measured by experienced podiatrists over 4 consecutive weeks and used as the healing reference. Results: For healing cases, the ratio of the area of the wound bed to its baseline measured using thermal images was found to be significantly lower at 2 weeks compared to nonhealing cases and this corresponded with a 50% reduction in area of DRFU at 4 weeks (group rank-based nonparametric analysis of variance P = .036). In comparison, neither the planimetric area measured using color images nor the temperature of the wound bed was associated with the healing. Conclusion: This study of 26 patients demonstrates that change in the isothermal area of DRFU can predict the healing status at week 4. Thermal imaging of DRFUs has the advantage of incorporating both area and temperature allowing for early prediction of the healing of these ulcers. Further studies with greater sample sizes are required to test the significance of these results.


2018 ◽  
Vol 2 (2) ◽  
pp. 63
Author(s):  
Ruaa Alaadeen Abdulsattar ◽  
Nada Hussein M. Ali

Error correction and error detection techniques are often used in wireless transmission systems. A color image of type BMP is considered as an application of developed lookup table algorithms to detect and correct errors in these images. Decimal Matrix Code (DMC) and Hamming code (HC) techniques were integrated to compose Hybrid Matrix Code (HMC) to maximize the error detection and correction. The results obtained from HMC still have some error not corrected because the redundant bits added by Hamming codes to the data are considered inadequate, and it is suitable when the error rate is low for detection and correction processes. Besides, a Hamming code could not detect large burst error period, in addition, the have same values sometimes which lead to not detect the error and consequently increase the error ratio. The proposed algorithm LUT_CORR is presented to detect and correct errors in color images over noisy channels, the proposed algorithm depends on the parallel Cyclic Redundancy Code (CRC) method that's based on two algorithms: Sarwate and slicing By N algorithms. The LUT-CORR and the aforementioned algorithms were merged to correct errors in color images, the output results correct the corrupted images with a 100 % ratio almost. The above high correction ratio due to some unique values that the LUT-CORR algorithm have. The HMC and the proposed algorithm applied to different BMP images, the obtained results from LUT-CORR are compared to HMC for both Mean Square Error (MSE) and correction ratio.  The outcome from the proposed algorithm shows a good performance and has a high correction ratio to retrieve the source BMP image.


Sign in / Sign up

Export Citation Format

Share Document