A Design Method for IIR and FIR Digital Notch Filter Used to sEMG

2012 ◽  
Vol 263-266 ◽  
pp. 184-187
Author(s):  
Lin Li ◽  
Jian Hui Wang ◽  
Shuai Ban

Surface electromyography (sEMG) signals, a non-invasive bioelectric signal, can be used for the rehabilitation and control of artificial extremities. But this signal is so weak that the electrical voltages ranging from -5 to +5 mv. In order to eliminate the 50Hz noise included in sEMG and hold details of the signal, IIR50HZ notch filter and FIR 50Hz notch filter are design. The compared simulation results show that the application of FIR 50Hz is better than IIR 50Hz in sEMG patter recognition system.

Author(s):  
M. A. Bañuelos-Saucedo ◽  
J. Castillo-Hernández ◽  
S. Quintana-Thierry ◽  
R. Damián-Zamacona ◽  
J. Valeriano-Assem ◽  
...  

Artificial neural networks base their processing capabilities in a parallel architecture, and this makes them useful to solve pattern recognition, system identification, and control problems. In this paper, we present a FPGA (Field Programmable Gate Array) based digital implementation of a McCulloch-Pitts type of neuron model with three types of non-linear activation function: step, ramp-saturation, and sigmoid. We present the VHDL language code used to implement the neurons as well as to present simulation results obtained with Xilinx Foundation 3.0 software. The results are analyzed in terms of speed and percentage of chip usage.


2021 ◽  
Vol 336 ◽  
pp. 06003
Author(s):  
Na Wu ◽  
Hao JIN ◽  
Xiachuan Pei ◽  
Shurong Dong ◽  
Jikui Luo ◽  
...  

Surface electromyography (sEMG), as a key technology of non-invasive muscle computer interface, is an important method of human-computer interaction. We proposed a CNN-IndRNN (Convolutional Neural Network-Independent Recurrent Neural Network) hybrid algorithm to analyse sEMG signals and classify hand gestures. Ninapro’s dataset of 10 volunteers was used to develop the model, and by using only one time-domain feature (root mean square of sEMG), an average accuracy of 87.43% on 18 gestures is achieved. The proposed algorithm obtains a state-of-the-art classification performance with a significantly reduced model. In order to verify the robustness of the CNN-IndRNN model, a compact real¬time recognition system was constructed. The system was based on open-source hardware (OpenBCI) and a custom Python-based software. Results show that the 10-subject rock-paper-scissors gesture recognition accuracy reaches 99.1%.


2020 ◽  
Vol 8 (2) ◽  
pp. 71-77
Author(s):  
Salah I. Yahya ◽  
Abbas Rezaei

In this work, a novel structure of a microstrip diplexer consisting of coupled patch cells is presented. It works at 2.5 GHz and 4.7 GHz for wireless applications. The proposed structure is well miniaturized with a compact area of 0.015 λg2, fabricated on 0.787 mm substrate height. It has two wide fractional bandwidths (FBWs) of 28% and 17.9% at the lower and upper channels, respectively. Another feature of the proposed design is the low group delays, which are better than 0.4 ns for both channels. Moreover, the designed diplexer can suppress the harmonics up to 10 GHz. Meanwhile, the insertion losses at both channels are low. The design method is based on proposing an approximated equivalent LC circuit of a novel basic resonator. The information about the resonator behavior is extracted from the even and odd modes analysis of the proposed equivalent LC circuit. Finally, our introduced diplexer is fabricated and measured to verify the simulation results, where the simulated and measured results are in good agreement.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Cheng-Biao Fu ◽  
An-Hong Tian ◽  
Kuo-Nan Yu ◽  
Yi‐Hung Lin ◽  
Her-Terng Yau

In this study the nonlinear behavior of a buck converter was simulated and the responses of Phases 1 and 2 and the chaotic phase were investigated using changes of input voltage. After a dynamic system model had been acquired using basic electronic circuit theory, Matlab and Pspice simulations were used to study system inductance, resistance, and capacitance. The characteristic changes of input voltage, and phase plane traces from simulation and experiments showed nonlinear behavior in Phases 1 and 2, as well as a chaotic phase. PID control and Integral Absolute Error (IAE) were used as adaption coefficients to control chaotic behavior, and particle swarm optimization (PSO) and the genetic algorithm were used to find the optimal gain parameters for the PID controller. Simulation results showed that the control of chaotic phenomena could be achieved and errors were close to zero. Fuzzy control was also used effectively to prevent chaos. The experimental results also showed nonlinear behavior from Phases 1 and 2 as well as the chaotic phase. Laboratory experiments conducted using both PID and fuzzy control echoed the simulation results. The fuzzy control results were somewhat better than those obtained with PID.


2020 ◽  
Vol 14 ◽  
Author(s):  
Vasu Mehra ◽  
Dhiraj Pandey ◽  
Aayush Rastogi ◽  
Aditya Singh ◽  
Harsh Preet Singh

Background:: People suffering from hearing and speaking disabilities have a few ways of communicating with other people. One of these is to communicate through the use of sign language. Objective:: Developing a system for sign language recognition becomes essential for deaf as well as a mute person. The recognition system acts as a translator between a disabled and an able person. This eliminates the hindrances in exchange of ideas. Most of the existing systems are very poorly designed with limited support for the needs of their day to day facilities. Methods:: The proposed system embedded with gesture recognition capability has been introduced here which extracts signs from a video sequence and displays them on screen. On the other hand, a speech to text as well as text to speech system is also introduced to further facilitate the grieved people. To get the best out of human computer relationship, the proposed solution consists of various cutting-edge technologies and Machine Learning based sign recognition models which have been trained by using Tensor Flow and Keras library. Result:: The proposed architecture works better than several gesture recognition techniques like background elimination and conversion to HSV because of sharply defined image provided to the model for classification. The results of testing indicate reliable recognition systems with high accuracy that includes most of the essential and necessary features for any deaf and dumb person in his/her day to day tasks. Conclusion:: It’s the need of current technological advances to develop reliable solutions which can be deployed to assist deaf and dumb people to adjust to normal life. Instead of focusing on a standalone technology, a plethora of them have been introduced in this proposed work. Proposed Sign Recognition System is based on feature extraction and classification. The trained model helps in identification of different gestures.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4419
Author(s):  
Ting Li ◽  
Haiping Shang ◽  
Weibing Wang

A pressure sensor in the range of 0–120 MPa with a square diaphragm was designed and fabricated, which was isolated by the oil-filled package. The nonlinearity of the device without circuit compensation is better than 0.4%, and the accuracy is 0.43%. This sensor model was simulated by ANSYS software. Based on this model, we simulated the output voltage and nonlinearity when piezoresistors locations change. The simulation results showed that as the stress of the longitudinal resistor (RL) was increased compared to the transverse resistor (RT), the nonlinear error of the pressure sensor would first decrease to about 0 and then increase. The theoretical calculation and mathematical fitting were given to this phenomenon. Based on this discovery, a method for optimizing the nonlinearity of high-pressure sensors while ensuring the maximum sensitivity was proposed. In the simulation, the output of the optimized model had a significant improvement over the original model, and the nonlinear error significantly decreased from 0.106% to 0.0000713%.


Frequenz ◽  
2020 ◽  
Vol 74 (11-12) ◽  
pp. 427-433
Author(s):  
Yaxin Liu ◽  
Feng Wei ◽  
Xiaowei Shi ◽  
Cao Zeng

AbstractIn this paper, a balanced-to-balanced (BTB) branch-slotline directional coupler (DC) is firstly presented, which can realize an arbitrary power division ratios (PDRs). The coupler is composed by microstrip-to-slotline (MS) transition structures and branch-slotline coupled structures. The single-ended to balanced-ended conversion is simplified and easy to implemented by the MS transition structures, which intrinsically leads to the differential-mode (DM) transmission and common-mode (CM) suppression. Moreover, the different PDRs which are controlled by the widths of branch-slotlines can be achieved. In order to verify the feasibility of the proposed design method, two prototype circuits of the proposed coupler with different PDRs are fabricated and measured. The return loss and the isolation of two designs are all better than 10 dB. Moreover, the CM suppressions are greater than 35 dB. A good agreement between the simulation and measurement results is observed.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Yan Lou ◽  
Kewei Chen ◽  
Xiangwei Zhou ◽  
Yanfeng Feng

A novel Injection-rolling Nozzle (IRN) in an imprint system with continuous injection direct rolling (CIDR) for ultra-thin microstructure polymer guide light plates was developed to achieve uniform flow velocity and temperature at the width direction of the cavity exit. A novel IRN cavity was designed. There are eight of feature parameters of cavity were optimized by orthogonal experiments and numerical simulation. Results show that the flow velocity at the width direction of the IRN outlet can reach uniformity, which is far better than that of traditional cavity. The smallest flow velocity difference and temperature difference was 0.6 mm/s and 0.24 K, respectively. The superior performance of the IRN was verified through a CIDR experiment. Several 0.35-mm thick, 340-mm wide, and 10-m long microstructural Polymethyl Methacrylate (PMMA) guide light plates were manufactured. The average filling rates of the microgrooves with the aspect ratio 1:3 reached above 93%. The average light transmittance is 88%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarzyna Sołkiewicz ◽  
Hubert Krotkiewski ◽  
Marcin Jędryka ◽  
Ewa M. Kratz

AbstractEndometriosis is an inflammatory disease which diagnostics is difficult and often invasive, therefore non-invasive diagnostics methods and parameters are needed for endometriosis detection. The aim of our study was to analyse the glycosylation of native serum IgG and IgG isolated from sera of women classified as: with endometriosis, without endometriosis but with some benign ginecological disease, and control group of healthy women, in context of its utility for differentiation of advanced endometriosis from the group of healthy women. IgG sialylation and galactosylation/agalactosylation degree was determined using specific lectins: MAA and SNA detecting sialic acid α2,3- and α2,6-linked, respectively, RCA-I and GSL-II specific to terminal Gal and terminal GlcNAc, respectively. The results of ROC and cluster analysis showed that the serum IgG MAA-reactivity, sialylation and agalactosylation factor may be used as supplementary parameters for endometriosis diagnostics and could be taken into account as a useful clinical tool to elucidate women with high risk of endometriosis development. Additionally, we have shown that the analysis of native serum IgG glycosylation, without the prior time-consuming and expensive isolation of the protein, is sufficient to differentiation endometriosis from a group of healthy women.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2510
Author(s):  
Konrad Górny ◽  
Piotr Kuwałek ◽  
Wojciech Pietrowski

The article proposes a proprietary approach to the diagnosis of induction motors allowing increasing the reliability of electric vehicles. This approach makes it possible to detect damage in the form of an inter-turn short-circuit at an early stage of its occurrence. The authors of the article describe an effective diagnostic method using the extraction of diagnostic signal features using an Enhanced Empirical Wavelet Transform and an algorithm based on the method of Ensemble Bagged Trees. The article describes in detail the methodology of the carried out research, presents the method of extracting features from the diagnostic signal and describes the conclusions resulting from the research. Phase current waveforms obtained from a real object as well as simulation results based on the field-circuit model of an induction motor were used as a diagnostic signal in the research. In order to determine the accuracy of the damage classification, simple metrics such as accuracy, sensitivity, selectivity, precision as well as complex metrics weight F1 and macro F1 were used.


Sign in / Sign up

Export Citation Format

Share Document