Design and Manufacture of 3D Flat Woven Fabric

2013 ◽  
Vol 333-335 ◽  
pp. 2115-2118 ◽  
Author(s):  
Shu Juan Yan ◽  
Li Hua Lv ◽  
Chun Yan Wei ◽  
Xiao Wang ◽  
Yong Zhu Cui

In the ordinary loom, the 3D woven fabrics like the orthogonal/connected stitching structure, angle Alliance/interlocked stitching structure by the reasonable transformation, weaving diagram and looming draft, have been woven in this paper. Using ordinary loom weaving fabrics, it would not only save the cost of production, but also has good controllability of woven fabrics. Good structural design and integrity of the 3D woven fabrics, own tight fabric structure, superior mechanical properties, low price, and broad application prospects. The results shows that this design would give a basis for further study on the development perform of 3D textile structural composite materials.

2020 ◽  
Vol 54 (28) ◽  
pp. 4387-4395
Author(s):  
Sanchi Arora ◽  
Abhijit Majumdar ◽  
Bhupendra Singh Butola

The beneficial effect of STF impregnation in enhancing the impact resistance of high-performance fabrics has been extensively reported in the literature. However, this research work reports that fabric structure has a decisive role in moderating the effectiveness of STF impregnation in terms of impact energy absorption. Plain woven fabrics having sett varying from 25 × 25 inch−1 to 55 × 55 inch−1 were impregnated with STF at two different padding pressures to obtain different add-ons. The impact energy absorption by STF impregnated loosely woven fabrics was found to be higher than that of their neat counterparts for both levels of add-on, while opposite trend was observed in case of tightly woven fabrics. Further, comparison of tightly woven plain, 2/2 twill, 3/1 twill and 2 × 2 matt fabrics revealed beneficial effect of STF impregnation, except for the plain woven fabric, establishing that there exists a fabric structure-STF impregnation interplay that tunes the impact resistance of woven fabrics.


2019 ◽  
Vol 90 (13-14) ◽  
pp. 1477-1494
Author(s):  
Magdi El Messiry ◽  
Shaimaa El-Tarfawy

Cutting processes using blades have found applications in many industries; for example, in garments, fiber–polymer composites, and high-performance fabric forming. In recent decades, the process of cutting the material using a robotic-controlled blade has raised concern about the value of the pressure and the cut force required for a certain type of woven fabric and the estimation of its value before the pressing and cutting process. A simple theoretical relation was established based on the fabric structure and yarn shear stress. The model formulation and experimental results to describe the basic theory of blade cutting fracture for woven fabric of different designs was derived. In this work, the experimental investigation of the effect of the fabric specifications, normal load, and the cutting speed on the cutting force was carried out, which indicates that the value of the specific cutting resistance of the fabric was found to be highly correlated with the fabric structure, warp and weft yarn count, Young’s modulus of the fabric, and fractional cover factors ratio ζ.


2014 ◽  
Vol 941-944 ◽  
pp. 1341-1344
Author(s):  
Hong Wei Yang ◽  
Heng Gao ◽  
Jian Hua Du ◽  
Shen Li Xu

The ballistic performance of UD cloth/3D fabric composite targets made of UD cloth and 3D fabric and UD cloth targets made of UD cloth were tested. The deformation of UD cloth is larger than that of 3D woven fabrics after shot and the ballistic performance of 3D woven fabric is weaker than that of UD cloth, but its structural performance and performance of resistance to multiple shoot is better than UD cloth's.


2017 ◽  
Vol 21 (4) ◽  
pp. 1627-1632 ◽  
Author(s):  
Jia-Jia Wu ◽  
Hong Tang ◽  
Yu-Xuan Wu

This paper proposes an effective method to predict the thermal conductivity of plain woven blended fabric to optimize woven fabric structure, and to evaluate thermal comfort. The unit cell model of fabric is established for numerical simulation of heat transfer through thickness. The thermal conductivity of blended yarns is calculated by a series model. The temperature and heat flux distributions are verified experimentally.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2221 ◽  
Author(s):  
Qiaole Hu ◽  
Hafeezullah Memon ◽  
Yiping Qiu ◽  
Yi Wei

Composite industry has long been seeking practical solutions to boost laminate through-thickness strengths and interlaminar shear strengths (ILSS), so that composite primary structures, such as stiffeners, can bear higher complex loadings and be more delamination resistant. Three dimensional (3D) woven fabrics were normally employed to render higher transverse and shear strengths, but the difficulty and high expense in producing such fabrics make it a hard choice. Based on a novel idea that the warp yarns that interlock layers of the weft yarns might provide adequate fiber crimps that would allow the interlaminar shear or radial stresses to be transferred and borne by the fibers, rather than by the relatively weaker matrix resin, thus improving the transverse strengths, this work provided a two point five dimensional (2.5D) approach as a practical solution, and demonstrated the superior transverse performances of an economical 2.5D shallow-bend woven fabric (2.5DSBW) epoxy composites, over the conventional two dimensional (2D) laminates and the costly 3D counterpart composites. This approach also produced a potential candidate to fabricate high performance stiffeners, as shown by the test results of L-beams which are common structural components of any stiffeners. This study also discovered that an alternative structure, namely a 2.5D shallow-straight woven fabric (2.5DSSW), did not show any advantages over the two control structures, which were a 2D plain weave (2DPW) and a 3D orthogonal woven fabric (3DOW) made out of the same carbon fibers. Composites of these structures in this study were conveniently fabricated using a vacuum-assisted resin infusion process (VARI). The L-beams were tested using a custom-made test fixture. The strain distribution and failure mode analysis of these beams were conducted using Digital Image Correlation (DIC) and X-ray Computed Tomography Scanning (CT). The results demonstrated that the structures containing Z-yarns or having high yarn crimps or waviness, such as in cases of 3DOW and 2.5DSBW, respectively, were shown to withstand high loadings and to resist delamination, favorable for the applications of high-performance structural composites.


2011 ◽  
Vol 331 ◽  
pp. 202-205
Author(s):  
Yu Tao Chang ◽  
Xiao Ming Qian ◽  
Hai Wen Liu ◽  
Hua Wu Liu

3D woven fabric significantly improves the mechanical properties, especially the strength resulting from the between layers connections of yarns Hence, 3D woven fabrics have been widely used as reinforcing material in prefabricated composites, A particular 3D woven fabric with “中” shaped cross section was developed in this study .The fabric was made in a plane loom weaving machine. The designing procedure and processing methods are given in details.


2011 ◽  
Vol 480-481 ◽  
pp. 448-452 ◽  
Author(s):  
Ping Wang ◽  
Yan Zhang

Flexible composites with high performance are widely used in geotextiles and some other fields. In this research work, the author studied the tensile behaviors of four neat woven fabrics and two coated woven fabrics. The comparison of the tensile strength between the uncoated and coated woven fabric revealed the effect of coating on the tensile strength of flexible composites which will be beneficial for the design and manufacture of flexible composite with high quality.


2015 ◽  
Vol 15 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Selin Hanife Eryuruk ◽  
Fatma Kalaoğlu

Abstract The tear strength of a woven fabric is very important, since it is more closely related to serviceability of the fabric. Tearing strength of the fabrics depend on the mobility of the yarn within the fabric structure. In this study, the tearing strength of four types of fabrics warp rib, weft rib, ripstop and plain weave were analysed, which were produced in different densities and with filament and texturised polyester yarns.


2015 ◽  
Vol 732 ◽  
pp. 123-126
Author(s):  
Diana Šimić Penava ◽  
Željko Penava ◽  
Željko Knezić

Anisotropy is the characteristic which is typical for most materials, especially woven fabrics. Influence of direction of tensile force action on the properties of the fabric is big and frequently tested. The woven fabric can be defined as orthogonal elastomer. The values of elastic modulus of woven fabrics for different angles of extension direction were analyzed. Three types of fabric samples of different weaves (plain, twill, sateen) and the same raw material composition were tested under tensile forces in seven directions oriented with 15° increment with respect to the weft direction. Elastic modulus of woven fabrics was determined experimentally in the laboratory. Based on the experimentally obtained values, theoretically calculated elastic modulus for arbitrarily chosen fabric directions was calculated. A good agreement between experimental results and the calculated obtained values of the elastic modulus was shown, so the theoretical equations can be used with high accuracy to calculate the elastic modulus of the fabric in various directions. Therefore, the measurements need to be implemented when the tensile force acting on the fabric only in the warp (90°), weft (0°) and at angle of 45°.


2018 ◽  
Vol 69 (04) ◽  
pp. 322-327 ◽  
Author(s):  
ÖZDEMİR HAKAN

Comfort is one of the most important aspects of clothing. Air permeability, one of the comfort charectaristics of fabrics, depends mainly on the fabric structure, which can be described by weave and yarn density. In this study, 16 worsted woven fabric samples were produced for winter clothing using eight frequently implemented weave types together with one warp density (28 ends/cm) and two weft densities (25 and 28 picks/cm). Additonally, semi-dull finish was applied on raw fabrics. Results revealed the effect of weave, weft yarn density and finishing process on air permeability of woven fabrics. 2/2 twill woven fabric, whose porosity is the lowest, have the lowest air permeability properties, therefore it is more convenient for winter clothing. It is observed that in all weave types, an increase at weft setting caused to decrease in air permeability and porosity values. Finishing process also leads to decreasesin porosity thereby to decrease air permeability property


Sign in / Sign up

Export Citation Format

Share Document