Simulation Analysis of Influences of Anti-Roll Torsion Bar on Vehicle Dynamics

2013 ◽  
Vol 409-410 ◽  
pp. 1486-1491
Author(s):  
Zhuo Yu He

In the secondary suspension of urban rail vehicles and high-speed passenger trains, combination of air springs and anti-roll torsion bar is widely used. However, in its practical use, cracks appear in the anti-roll torsion bar and vehicle curve performance is lower. Through analysis of anti-roll torsion bar, acceleration being taken into account, the dynamics models of anti-roll torsion bar and the vehicle itself are established. The results indicate that the combination of anti-roll torsion bar and rubber joints is superior to present a more reasonable anti-roll stiffness, to ensure better dynamic performance of the train, and also to lengthen the life of the anti-roll torsion bar.

Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 765
Author(s):  
Junhui Zhu ◽  
Peng Pan ◽  
Yong Wang ◽  
Sen Gu ◽  
Rongan Zhai ◽  
...  

The piezoelectrically-actuated stick-slip nanopositioning stage (PASSNS) has been applied extensively, and many designs of PASSNSs have been developed. The friction force between the stick-slip surfaces plays a critical role in successful movement of the stage, which influences the load capacity, dynamic performance, and positioning accuracy of the PASSNS. Toward solving the influence problems of friction force, this paper presents a novel stick-slip nanopositioning stage where the flexure hinge-based friction force adjusting unit was employed. Numerical analysis was conducted to estimate the static performance of the stage, a dynamic model was established, and simulation analysis was performed to study the dynamic performance of the stage. Further, a prototype was manufactured and a series of experiments were carried out to test the performance of the stage. The results show that the maximum forward and backward movement speeds of the stage are 1 and 0.7 mm/s, respectively, and the minimum forward and backward step displacements are approximately 11 and 12 nm, respectively. Compared to the step displacement under no working load, the forward and backward step displacements only increase by 6% and 8% with a working load of 20 g, respectively. And the load capacity of the PASSNS in the vertical direction is about 72 g. The experimental results confirm the feasibility of the proposed stage, and high accuracy, high speed, and good robustness to varying loads were achieved. These results demonstrate the great potential of the developed stage in many nanopositioning applications.


Author(s):  
Ren Luo ◽  
Changdong Liu ◽  
Huailong Shi

A secondary suspension configuration that integrates the Interconnected Hydro-Pneumatic Struts (IHPS) to the air spring system is proposed in this investigation for railway vehicles. Using the dynamic performance of IHPS, this suspension aims to provide smaller vertical supporting stiffness and larger anti-roll resistance compared to the traditional configuration, the air spring is connected to an emergency rubber spring in series with quite large stiffness. By replacing the rubber spring with IHPS, the proposed suspension configuration contributes to vibration absorption as well as anti-roll stiffness of the vehicle. The IHPS has two hydraulic cylinders installed in parallel to support the suspended mass. Each hydraulic cylinder has three oil chambers, and the oil chambers between the left and right struts are cross-connected through pipelines. Considering the oil compressibility and the vibration of liquid in the interconnected pipes, the mathematical model of IHPS is formulated and established in MATLAB. A multi-body dynamic railway vehicle model is built in SIMPACK, into which the IHPS is integrated through a co-simulation technique. Model validations on the IHPS are performed and its static and dynamic stiffness is examined. Numerical simulations show that the IHPS suspension reduces the vertical acceleration on the car body floor at a frequency between 1 and 3 Hz than the traditional air spring system with/without an anti-roll bar configuration. The vertical Sperling index of the vehicle using the IHPS suspension is smaller than that of the traditional suspensions, and it is more significant when the air spring deflates. However, the vertical acceleration with IHPS is larger than the traditional suspensions at 13∼55 Hz when the air spring deflates.


1982 ◽  
Vol 104 (3) ◽  
pp. 238-246 ◽  
Author(s):  
R. J. Caudill ◽  
L. M. Sweet ◽  
K. Oda

The potential for improved dynamic performance of conventional rail vehicles through control of linear induction or synchronous motors is explored. Improvements in vehicle stability, ride quality, traction capability, track loading, derailment safety, and curving performance result from use of controllable lateral and normal forces present in the motor. Recent advances in technology originally developed for high-speed levitated vehicles are applied to conventional railroad systems which have a greater potential for near-term implementation. The dynamic performance of alternate configurations, consisting of several generic motor types mounted either on trucks or carbodies, are evaluated. Significant improvements in both lateral dynamic stability and curving performance may be realized through magnetic guidance of the trucks using force levels well within the capability of existing linear motor technology.


2022 ◽  
Vol 355 ◽  
pp. 02057
Author(s):  
Wei Xiong ◽  
Yajun Ma ◽  
Zhen Wang ◽  
Weiwei Jiao ◽  
Wei Shi ◽  
...  

In order to meet the development needs of aerospace servo technology, the angular displacement sensor, which compact structure, high reliability, and be able to adapt to harsh working environments is used for the measurement and feedback of the high speed of the servo motor output shaft. The design of a two-redundant multi-turn absolute encoder based on a single-turn absolute encoder and a precision small modulus reducer, which realizes the high speed measurement of the servo motor shaft at 8000 rpm. Product performance meets the technical indicators of similar products of HEIDENHAIN encoders, can withstand high temperature, long working life, good dynamic performance, small space and light weight. System test and simulation analysis show that the design technical scheme is effective and feasible, can meet the requirements of the servo system.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Salvatore Circosta ◽  
Renato Galluzzi ◽  
Nicola Amati ◽  
Andrea Tonoli ◽  
Angelo Bonfitto ◽  
...  

Abstract Over the last decades, the search for fast and efficient transportation systems has raised the interest toward maglev technologies. In this scenario, the Hyperloop paradigm is regarded as a breakthrough for future mobility. However, its practical implementation requires the solution of key shortcomings. Among these, the stability of the electrodynamic levitation system remains partially unexplored. The state of the art presents numerous attempts to attain stable behavior. In recent works, the stabilization of maglev vehicles has been addressed only for the vertical dynamics. Nevertheless, stable operation of all degree-of-freedom is required for a successful implementation of these transportation systems. The present paper addresses the full stabilization of a downscaled vehicle where levitation and guidance are provided by electrodynamic means. To this end, a design methodology supported by analytical modeling is proposed, where the degree-of-freedom are stabilized by suitably introducing secondary suspension elements. The design of the secondary suspension and the guidance system is obtained through the optimization of stability and dynamic performance. Then, a multibody model is developed. Both numerical approaches are compared in the frequency domain for validation purposes. Finally, the multibody model is simulated in the time domain to assess system performance in the presence of track irregularities and evaluate coupling effects between the degree-of-freedom.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


2012 ◽  
Vol 487 ◽  
pp. 203-207
Author(s):  
Gong Xue Zhang ◽  
Xiao Kai Shen

Purpose, with the application of workbench finite element analysis software, get the analysis results of DVG 850 high-speed vertical machining center via the modal analysis and harmonic response analysis. Use the calculation results for reference, put forward the improved method, and prove the credibility of the simulation analysis by testing DVG 850 prototype.


Cryogenics ◽  
2021 ◽  
pp. 103321
Author(s):  
Yuhang Yuan ◽  
Jipeng Li ◽  
Zigang Deng ◽  
Zhehao Liu ◽  
Dingding Wu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4143
Author(s):  
Youzheng Cui ◽  
Shenrou Gao ◽  
Fengjuan Wang ◽  
Qingming Hu ◽  
Cheng Xu ◽  
...  

Compared with other materials, high-volume fraction aluminum-based silicon carbide composites (hereinafter referred to as SiCp/Al) have many advantages, including high strength, small change in the expansion coefficient due to temperature, high wear resistance, high corrosion resistance, high fatigue resistance, low density, good dimensional stability, and thermal conductivity. SiCp/Al composites have been widely used in aerospace, ordnance, transportation service, precision instruments, and in many other fields. In this study, the ABAQUS/explicit large-scale finite element analysis platform was used to simulate the milling process of SiCp/Al composites. By changing the parameters of the tool angle, milling depth, and milling speed, the influence of these parameters on the cutting force, cutting temperature, cutting stress, and cutting chips was studied. Optimization of the parameters was based on the above change rules to obtain the best processing combination of parameters. Then, the causes of surface machining defects, such as deep pits, shallow pits, and bulges, were simulated and discussed. Finally, the best cutting parameters obtained through simulation analysis was the tool rake angle γ0 = 5°, tool clearance angle α0 = 5°, corner radius r = 0.4 mm, milling depth ap = 50 mm, and milling speed vc= 300 m/min. The optimal combination of milling parameters provides a theoretical basis for subsequent cutting.


Sign in / Sign up

Export Citation Format

Share Document