The Research of the Seepage Regularity of Power-Law Fluid under Porosity Scale

2013 ◽  
Vol 423-426 ◽  
pp. 1722-1726
Author(s):  
Er Long Yang ◽  
Yu Xin Gao ◽  
Dong Liang Li

There are various shapes of capillary tubes in the rock, and the flow in triangles and rectangles capillary tubes has been studied very little. In this paper, the approximate solution of the distribution of the velocity in triangles capillary tubes has been obtained using variational method. The quantitative relation between pressure difference and flow rate in the two kinds of capillary tubes has been obtained by integrating in the entire capillary tubes, which is similar to Poiseuille's law. this study also applies the Pdetool tool in Matlab to solve the laminar flow of different sections in capillary flow numerically and compares the variational results and numerical results with the literature analytic solution, numerical solution and the experimental results. On the foundation of comparing the variational results, the numerical results and the literature analytic solution, numerical solution and the experimental results, we analyze the influence of the power-law index and cross-section shape on the comprehensive resistance coefficient and flow pressure relationship.

1989 ◽  
Vol 54 (4) ◽  
pp. 967-980 ◽  
Author(s):  
Ondřej Wein ◽  
Petr Kučera

Extended Leveque problem is studied for linear velocity profiles, vx(z) = u + qz. The existing analytic solution is reconsidered and shown to be inapplicable for the accurate calculation of mean mass-transfer coefficients. A numerical solution is reported and its accuracy is checked in detail. Simple but fairly accurate empirical formulas are suggested for the calculating of local and mean mass-transfer coefficients.


2012 ◽  
Vol 28 (3) ◽  
pp. 439-452 ◽  
Author(s):  
A. M. Zenkour ◽  
M. Sobhy

AbstractThis paper deals with the static response of simply supported functionally graded material (FGM) viscoelastic sandwich plates subjected to transverse uniform loads. The FG sandwich plates are considered to be resting on Pasternak's elastic foundations. The sandwich plate is assumed to consist of a fully elastic core sandwiched by elastic-viscoelastic FGM layers. Material properties are graded according to a power-law variation from the interfaces to the faces of the plate. The equilibrium equations of the FG sandwich plate are given based on a trigonometric shear deformation plate theory. Using Illyushin's method, the governing equations of the viscoelastic sandwich plate can be solved. Parametric study on the bending analysis of FG sandwich plates is being investigated. These parameters include (i) power-law index, (ii) plate aspect ratio, (iii) side-to-thickness ratio, (iv) loading type, (v) foundation stiffnesses, and (vi) time parameter.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Maurizio Pajola ◽  
Alice Lucchetti ◽  
Lara Senter ◽  
Gabriele Cremonese

We study the size frequency distribution of the blocks located in the deeply fractured, geologically active Enceladus South Polar Terrain with the aim to suggest their formative mechanisms. Through the Cassini ISS images, we identify ~17,000 blocks with sizes ranging from ~25 m to 366 m, and located at different distances from the Damascus, Baghdad and Cairo Sulci. On all counts and for both Damascus and Baghdad cases, the power-law fitting curve has an index that is similar to the one obtained on the deeply fractured, actively sublimating Hathor cliff on comet 67P/Churyumov-Gerasimenko, where several non-dislodged blocks are observed. This suggests that as for 67P, sublimation and surface stresses favor similar fractures development in the Enceladus icy matrix, hence resulting in comparable block disaggregation. A steeper power-law index for Cairo counts may suggest a higher degree of fragmentation, which could be the result of localized, stronger tectonic disruption of lithospheric ice. Eventually, we show that the smallest blocks identified are located from tens of m to 20–25 km from the Sulci fissures, while the largest blocks are found closer to the tiger stripes. This result supports the ejection hypothesis mechanism as the possible source of blocks.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


Author(s):  
M. A. Hassan ◽  
Manabendra Pathak ◽  
Mohd. Kaleem Khan

The temperature and concentration play an important role on rheological parameters of the gel. In this work, an experimental investigation of thermorheological properties of aqueous gel Carbopol Ultrez 20 for various concentrations and temperatures has been presented. Both controlled stress ramps and controlled stress oscillatory sweeps were performed for obtaining the rheological data to find out the effect of temperature and concentration. The hysteresis or thixotropic seemed to have negligible effect. Yield stress, consistency factor, and power law index were found to vary with temperature as well as concentration. With gel concentration, the elastic effect was found to increase whereas viscous dissipation effect was found to decrease. Further, the change in elastic properties was insignificant with temperature in higher frequency range of oscillatory stress sweeps.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2009 ◽  
Vol 50 (3) ◽  
pp. 407-420
Author(s):  
ROGER YOUNG

AbstractAn analytic solution is developed for the one-dimensional dissipational slip gradient equation first described by Gurtin [“On the plasticity of single crystals: free energy, microforces, plastic strain-gradients”, J. Mech. Phys. Solids48 (2000) 989–1036] and then investigated numerically by Anand et al. [“A one-dimensional theory of strain-gradient plasticity: formulation, analysis, numerical results”, J. Mech. Phys. Solids53 (2005) 1798–1826]. However we find that the analytic solution is incompatible with the zero-sliprate boundary condition (“clamped boundary condition”) postulated by these authors, and is in fact excluded by the theory. As a consequence the analytic solution agrees with the numerical results except near the boundary. The equation also admits a series of higher mode solutions where the numerical result corresponds to (a particular case of) the fundamental mode. Anand et al. also established that the one-dimensional dissipational gradients strengthen the material, but this proposition only holds if zero-sliprate boundary conditions can be imposed, which we have shown cannot be done. Hence the possibility remains open that dissipational gradient weakening may also occur.


Author(s):  
Mohamed M. Khader

AbstractThis paper is devoted to introduce a numerical treatment using the generalized Adams-Bashforth-Moulton method for some of the variable-order fractional modeling dynamics problems, such as Riccati and Logistic differential equations. The fractional derivative is described in Caputo variable-order fractional sense. The obtained numerical results of the proposed models show the simplicity and efficiency of the proposed method. Moreover, the convergence order of the method is also estimated numerically.


2007 ◽  
Vol 3 (S247) ◽  
pp. 279-287
Author(s):  
Patrick Antolin ◽  
Kazunari Shibata ◽  
Takahiro Kudoh ◽  
Daiko Shiota ◽  
David Brooks

AbstractAlfvén waves can dissipate their energy by means of nonlinear mechanisms, and constitute good candidates to heat and maintain the solar corona to the observed few million degrees. Another appealing candidate is the nanoflare-reconnection heating, in which energy is released through many small magnetic reconnection events. Distinguishing the observational features of each mechanism is an extremely difficult task. On the other hand, observations have shown that energy release processes in the corona follow a power law distribution in frequency whose index may tell us whether small heating events contribute substantially to the heating or not. In this work we show a link between the power law index and the operating heating mechanism in a loop. We set up two coronal loop models: in the first model Alfvén waves created by footpoint shuffling nonlinearly convert to longitudinal modes which dissipate their energy through shocks; in the second model numerous heating events with nanoflare-like energies are input randomly along the loop, either distributed uniformly or concentrated at the footpoints. Both models are based on a 1.5-D MHD code. The obtained coronae differ in many aspects, for instance, in the simulated intensity profile that Hinode/XRT would observe. The intensity histograms display power law distributions whose indexes differ considerably. This number is found to be related to the distribution of the shocks along the loop. We thus test the observational signatures of the power law index as a diagnostic tool for the above heating mechanisms and the influence of the location of nanoflares.


Sign in / Sign up

Export Citation Format

Share Document