Study on Mechanical Properties of Compound-Umbrella Arch in Bias Tunnel Entrance

2013 ◽  
Vol 438-439 ◽  
pp. 987-990 ◽  
Author(s):  
Xiao Hui Xue ◽  
Zhi Jie Sun ◽  
Zhong Ming Su ◽  
Fei Song

For a comprehensive analysis of the mechanical properties of compound-umbrella arch in the unsymmetrically loaded tunnel entrance, we focus on the force characteristics to optimize the structure of composite umbrella arch, and improve its economic efficiency. The stresses on the bottom of pile, the pile and the steel arch were monitored, and analyzed by the finite element software. The results show that, on the bias terrain, the stress of the pile bottom is nonuniform with uneven settlement. The stress distribution is very complex, where the tensile stress appears on the pile bottom, the compressive stress takes place on the arch foot and the vault, which is not good to the stability of the overall umbrella arch. As both sides of the umbrella arch bear a large different force, the piles on both sides of the umbrella arch subject to large bending moment and axial force, which improve the stability of the tunnel entrance.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5417-5432
Author(s):  
Chao Li ◽  
Xilong Wang ◽  
Yizhuo Zhang

To explore the overall mechanical properties of bamboo-wood composite cross-laminated timber (BCLT), a simulation model of BCLT mechanical behavior based on the solid element was established using the finite element software ABAQUS. The actual four-point bending experiment was compared and analyzed with the finite element numerical simulation. The total curve error coefficient of the BCLT specimen at 18-mm displacement was 0.2988 while the interval was 0.5 mm. The error coefficient was 0.0178 when the maximum load was reached, and the minimum error coefficient was 0.0015 at 12 mm of displacement. Analysis of the influence of material parameters, meshing density, and material arrangement on the final stress distribution indicate that the difference in the elastic parameters of the material greatly influence the final stress distribution, and the arrangement and combination of materials also have an effect on the overall mechanical properties of the BCLT board. The combination CLT1-2-1 (i.e., the upper and lower layers of the bamboo are Arrangement 1 and the hemlock is Arrangement 2) have a maximum load of 57682 Ν and a maximum stress of 103.9 MPa.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Łukasz Warguła ◽  
Dominik Wojtkowiak ◽  
Mateusz Kukla ◽  
Krzysztof Talaśka

This article presents the results of experimental research on the mechanical properties of pine wood (Pinus L. Sp. Pl. 1000. 1753). In the course of the research process, stress-strain curves were determined for cases of tensile, compression and shear of standardized shapes samples. The collected data set was used to determine several material constants such as: modulus of elasticity, shear modulus or yield point. The aim of the research was to determine the material properties necessary to develop the model used in the finite element analysis (FEM), which demonstrates the symmetrical nature of the stress distribution in the sample. This model will be used to analyze the process of grinding wood base materials in terms of the peak cutting force estimation and the tool geometry influence determination. The main purpose of the developed model will be to determine the maximum stress value necessary to estimate the destructive force for the tested wood sample. The tests were carried out for timber of around 8.74% and 19.9% moisture content (MC). Significant differences were found between the mechanical properties of wood depending on moisture content and the direction of the applied force depending on the arrangement of wood fibers. Unlike other studies in the literature, this one relates to all three stress states (tensile, compression and shear) in all significant directions (anatomical). To verify the usability of the determined mechanical parameters of wood, all three strength tests (tensile, compression and shear) were mapped in the FEM analysis. The accuracy of the model in determining the maximum destructive force of the material is equal to the average 8% (for tensile testing 14%, compression 2.5%, shear 6.5%), while the average coverage of the FEM characteristic with the results of the strength test in the field of elastic-plastic deformations with the adopted ±15% error overlap on average by about 77%. The analyses were performed in the ABAQUS/Standard 2020 program in the field of elastic-plastic deformations. Research with the use of numerical models after extension with a damage model will enable the design of energy-saving and durable grinding machines.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4145
Author(s):  
He Xue ◽  
Zheng Wang ◽  
Shuai Wang ◽  
Jinxuan He ◽  
Hongliang Yang

Dissimilar metal welded joints (DMWJs) possess significant localized mechanical heterogeneity. Using finite element software ABAQUS with the User-defined Material (UMAT) subroutine, this study proposed a constitutive equation that may be used to express the heterogeneous mechanical properties of the heat-affected and fusion zones at the interfaces in DMWJs. By eliminating sudden stress changes at the material interfaces, the proposed approach provides a more realistic and accurate characterization of the mechanical heterogeneity in the local regions of DMWJs than existing methods. As such, the proposed approach enables the structural integrity of DMWJs to be analyzed in greater detail.


2012 ◽  
Vol 544 ◽  
pp. 194-199
Author(s):  
Di Zhang ◽  
Shui Ping Sheng ◽  
Zeng Liang Gao

Two important parameters of torispherical head that are (interior radius of spherical crown area) and r (interior radius of transition corner) have been optimized by the module of the large general-purpose finite-element software ANSYS, targeting the strength and stability of the head. This paper provides an optimized torispherical head, which improves the stability of the edge of the head with acceptable strength of the head. The procedure is generally applicable as a design tool for optimal design.


2017 ◽  
Vol 730 ◽  
pp. 548-553
Author(s):  
Jing Ge ◽  
Hao Jiang ◽  
Zhen Yu Sun ◽  
Guo Jun Yu ◽  
Bo Su ◽  
...  

In this paper, we establish the mechanical property analysis of Single-walled Carbon Nanotubes (SWCNTs) modified beam element model based on the molecular structural mechanics method. Then we study the mechanical properties of their radial direction characteristics using the finite element software Abaqus. The model simulated the different bending stiffness with rectangular section beam elements C-C chemical force field. When the graphene curled into arbitrary chirality of SWCNTs spatial structure, the adjacent beam position will change the moment of inertia of the section of the beam. Compared with the original beam element model and the calculation results, we found that the established model largely reduced the overestimate of the original model of mechanical properties on the radial direction of the SWCNTs. At the same time, compared with other methods available in the literature results and the experimental data, the results can be in good agreement.


Rekayasa ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 191-199
Author(s):  
Irma Noviyanti ◽  
Rudi Walujo Prastianto ◽  
Murdjito Murdjito

A marginal field defines as an oil and/or gas field that has a short production period, low proven reservoir, and could not be exploited using existing technology. As the demand for oil and gas keeps increasing, one of the solutions to tackle the issues is to build the modified platform which came to be more minimalist to conduct the oil and gas production in the marginal field. Naturally, the minimum offshore structures are cost less but low in redundancy, therefore, pose more risks. Although the study on the minimum structures is still uncommon, there are opportunities to find innovative systems that need to have a further analysis toward such invention. Therefore, this study took the modified jacket platform as a minimum structure, and local stresses analysis by using finite element method is applied for the most critical tubular joint with multiplanarity of the joint is taking into account. The analysis was carried out using the finite element program of Salome Meca with three-dimensional solid elements are used to model the multiplanar joint. Various loading types of axial force, in-plane bending moment, and out-of-plane bending moment are applied respectively to investigate the stress distribution along the brace-chord intersection line of the tubular joint. The results show that the hotspot stress occurred at a different point along each brace-chord intersection line for each loading type. Finally, as compared to the in-plane bending moment or out-of-plane bending moment loading types, the axial force loading state is thought to generate greater hotspot stress.


2013 ◽  
Vol 671-674 ◽  
pp. 974-979
Author(s):  
Jie Dai ◽  
Jin Di ◽  
Feng Jiang Qin ◽  
Min Zhao ◽  
Wen Ru Lu

For steel box girder of cable-stayed bridge, which using incremental launching method, during the launching process, structural system and boundary conditions were changing, structure mechanical behaviors were complex. It was necessary to conduct a comprehensive analysis on internal force and deformation of the whole structure during the launching process. Took a cable-stayed bridge with single tower, double cable planes and steel box girder in China as an example; finite element software MIDAS Civil 2010 was used to establish a model for steel box girder, simulation analysis of the entire incremental launching process was carried out. Variation rules and envelopes of the internal force, stress, deformation and support reaction were obtained. The result showed that: the maximum value of positive bending moment after launching complete was 60% of the maximum value of positive bending moment during the launching process. The maximum value of negative bending moment after launching complete was 78% of the maximum value of negative bending moment during the launching process.


2003 ◽  
Vol 15 (02) ◽  
pp. 82-85 ◽  
Author(s):  
SHYH-CHOUR HUANG ◽  
CHANG-FENG TSAI

This paper presents results from using a 3-dimensional finite element model to assess the stress distribution in the bone, in the implant and in the abutment as a function of the implant's diameter and length. Increasing implant diameter and length increases the stability of the implant system. By using a finite element analysis, we show that implant length does not decrease the stress distribution of either the implant or the bone. Alternatively, however implant diameter increases reduce the stresses. For the latter case, the contact area between implant and bone is increased thus the stress concentration effect is decreased. Also, with increased implant diameter the bone loss is decreased and as a consequence the success rate is improved.


2011 ◽  
Vol 189-193 ◽  
pp. 3778-3781
Author(s):  
Yin Fang Jiang ◽  
Lei Fang ◽  
Zhi Fei Li ◽  
Zhen Zhou Tang

Laser shock processing is a technique similar to shot peening that imparts compressive residual stresses in materials for improved fatigue resistance. Finite element analysis techniques have been applied to predict the residual stresses from Laser shock processing. The purpose of this paper is to investigate of the different sheet thickness interactions on the stress distribution during the laser shock processing of 7050-T7451 aluminum alloy by using the finite element software. The results indicate that the sheet thickness has little effects on the compression stress in the depth of sheet, but great impacts on the reserve side.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1165 ◽  
Author(s):  
Hannes Fröck ◽  
Lukas Vincent Kappis ◽  
Michael Reich ◽  
Olaf Kessler

Age hardening aluminium alloys obtain their strength by forming precipitates. This precipitation-hardened state is often the initial condition for short-term heat treatments, like welding processes or local laser heat treatment to produce tailored heat-treated profiles (THTP). During these heat treatments, the strength-increasing precipitates are dissolved depending on the maximum temperature and the material is softened in these areas. Depending on the temperature path, the mechanical properties differ between heating and cooling at the same temperature. To model this behavior, a phenomenological material model was developed based on the dissolution characteristics and experimental flow curves were developed depending on the current temperature and the maximum temperature. The dissolution characteristics were analyzed by calorimetry. The mechanical properties at different temperatures and peak temperatures were recorded by thermomechanical analysis. The usual phase transformation equations in the Finite Element Method (FEM) code, which were developed for phase transformation in steels, were used to develop a phenomenological model for the mechanical properties as a function of the relevant heat treatment parameters. This material model was implemented for aluminium alloy 6060 T4 in the finite element software LS-DYNA (Livermore Software Technology Corporation).


Sign in / Sign up

Export Citation Format

Share Document