Adsorption of Cefradine onto Powder and Activated Carbon Prepared from Orange Peel

2013 ◽  
Vol 470 ◽  
pp. 11-14 ◽  
Author(s):  
Rui Xin Guo ◽  
Zhi Liang Wang ◽  
Guo Ping Li ◽  
Jian Qiu Chen

The adsorption of cefradine was carried out using biological adsorbents of powder and carbon prepared from orange peels, an agriculture by-product. The equilibrium was easily reached in less than 10 minutes, with adsorption rates of more than 98%. Cefradine showed a firm combination to the adsorbent, which could hardly be damaged or affected by pH values. After equilibrium was reached within 1 h, no desorption behavior was observed in the next 30 minutes. The adsorption process could be well fitted thermodynamically to both Freundlich and Langmuir equations. Similar results could also be obtained using ashes of orange peel, as well as carbon prepared from pistachio and peanut hull, indicating an attractive option to treat industrial wastewater.

2000 ◽  
Vol 65 (10) ◽  
pp. 715-723 ◽  
Author(s):  
Aleksandra Dakovic ◽  
Magdalena Tomasevic-Canovic ◽  
Vera Dondur ◽  
Aleksandra Vujakovic ◽  
Predrag Radosevic

The kinetics of aflatoxins B1 and G2 adsorption on Ca-clinoptilolite at pH2 and 7, in aqueous electrolyte at 37?C were studied. For both aflatoxins, the adsorption process begins with a fast reaction whereby most of the toxin is adsorbed in the first few minutes. This fast process is followed by the significantly slower process of aflatoxin bonding at active centers of mineral adsorbent. The initial rate method showed that the fast adsorption process of aflatoxin ?1 and G2, at both pH values is a first order reaction, while the slow adsorption process of these aflatoxins is a zero order reaction. The adsorption indexes and adsorption rates for both examined toxins were pH dependent. In the investigated initial toxins concentration ranges (500-3000 ?g/dm3), high adsorption indexes were achieved (> 80 %).


2020 ◽  
pp. 1-14
Author(s):  
Andrzej Bielski

The paper investigates whether time and doses of powder activated carbon (PAC) effect adsorption rates of organic contaminants from water and proposes a new model of volume adsorption. Depending on the nature of the organic compounds present in water, a general description of the adsorption process may require a linear combination of adsorption models running at different rates and at different parameters of adsorption isotherms. The model showed a good fit with the measured data and could be used in designing adsorption units at water or wastewater treatment plants. The proposed set of model equations enables to predict the effects of PAC adsorption in both plug flow reactors and homogeneous reactors.


Author(s):  
Saisantosh Vamshi Harsha MADIRAJU ◽  
Yung-Tse HUNG ◽  
Howard Hao-Che PAUL

This study was undertaken to determine the treatment a binary mixture of dye wastewater (containing Naphthol Green B) and the sugar industry wastewater for removal of color. The specific treatment in the current research consists of adsorption using low-cost adsorbents and microfiltration using Whatman-41 microfilters. Considerations of this treatment process are to take the samples using batch adsorption and avoid coagulation with further dilution. Numerous runs are made, with the ideal waste samples prepared in the laboratory. As a 1st step in the study, different dye concentrations are considered using different concentrations of sugar wastewater. Samples are treated with 3 different Agro-based low-cost adsorbents (orange peel, peanut hull, and Powdered Activated Carbon (PAC)). Transmittance values for Naphthol Green B after treatment with orange peel and peanut hull are 83.12 % and 76.98 % respectively. Peanut hull has the highest transmittance of 76.98 % with < 425 µm size. Orange peel contributes to the highest transmittance of 83.12 % with a 2 g dosage. The values of transmittance after treatment with PAC are taken as the datum for the comparison of adsorption performance after treatment using orange peel and peanut hull. Peanut hull has the highest Non-Purgeable Organic Carbon (NPOC) measurement of 37.86 mg/L when mixed with 600 ppm of sugar wastewater. Similarly, when mixed with 600 ppm of sugar wastewater, orange peel contributes to the NPOC value of 35.06 mg/L. These treated samples using low-cost adsorbents can be considered as pre-treated wastewater that can be sent to municipal wastewater treatment plants. HIGHLIGHTS Orange Peel and Peanut Hull are the Agro-based low-cost adsorbents for color removal Wastewater treated with Peanut Hull has high Non-Purgeable Organic Carbon measurement Peanut hull has the highest transmittance of 76.98 % with < 425µm size Orange peel contributes to the highest transmittance of 83.12 % with a 2 g dosage Powdered Activated Carbon is considered as a reference adsorbent in this study GRAPHICAL ABSTRACT


2017 ◽  
Vol 5 (2) ◽  
pp. 62-65
Author(s):  
Rosdayana Mohamad@Muda ◽  
Mohd Zazmiezi Mohd Alias ◽  
Rozidaini Mohd Ghazi

Textile industry is one of the major contributors either in terms of employment or economies.This industry has provided variety of daily necessity such as sources of yarn and clothing.Extensively use of dyes in this textile industry has created water pollution. The serious problemhappened when the daily water usage is from the untreated effluents which are discharged directlyinto water bodies. However, the disposed dyes into environment can be treated with adsorbentssuch as activated carbon via adsorption process. In this study, Parkia speciosa (petai) pods werechosen as the raw material from agricultural waste to produce activated carbon. Activated carbonwas prepared from two different chemicals and application of four different carbonization time.Two parameters studied in the experiment are initial dye concentration and contact time. From theresult, 100% of methyl red was removed by the activated carbon impregnated with zinc chloridesolution at 1 hour carbonization time. The optimum time and initial concentration of dye was 30minutes and 10 ppm respectively with the percentage removal of 100%. Thus, this result couldcontribute some knowledge on the use of alternative adsorbent from agricultural wasteimpregnation with specified chemicals in treating textile industrial wastewater.


Author(s):  
Larissa Firmino de Lima ◽  
Victória Regina Celso Monteiro ◽  
Carlos Eduardo Rodrigues Barquilha ◽  
Maria Cristina Borba Braga

The increasing accumulation of waste in the environment has several environmental and public health impacts. In contrast, the circular economy emerges as a model that seeks the return of waste to the production chain. An alternative for the reinsertion of these materials to the production cycle is their conversion into biochar by the pyrolysis process. Thus, this study aims to produce, perform the initial characterization and compare biochars obtained from two different matrices: sludge from sewage treatment plants and orange peels. The sludge samples were pyrolyzed at 450 °C (BL450) and 650 °C (BL650). While the orange peel biochars were produced at 400 °C (BC400) and 600 °C (BC600). Yields were determined and analyzes of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were also performed. The yields obtained were 32% (BC400), 28% (BC600), 46% (BL450) and 38% (BL650). The presence of pores was identified in the BC400 and BC600 SEM micrographs. However, for the BL450 and the BL650 samples, heterogeneous and asymmetric surfaces were observed. From the EDX analysis the absence of trace metals and the presence of compounds potentially beneficial to the soil and plants were found, which can act as binders in the adsorption process. In addition, due to their mostly carbonaceous composition, biochars are resistant to decomposition and can contribute to the carbon sequestration process. The yields obtained indicate a reduction of the mass of waste, which can be advantageous for handling and transportation. As a result, the production of biochar from non-conventional materials, such as sewage sludge and orange peels, can be seen as an attractive alternative for waste management, since it assists the reintroduction of these materials in the production chain, according to the concept of circular economy. 


1999 ◽  
Vol 40 (7) ◽  
pp. 109-116 ◽  
Author(s):  
M. H. Ansari ◽  
A. M. Deshkar ◽  
P. S. Kelkar ◽  
D. M. Dharmadhikari ◽  
M. Z. Hasan ◽  
...  

Steamed Hoof Powder (SHP), size &lt; 53μ, was observed to have high adsorption capacity for Hg(II) with &gt;95% removal from a solution containing 100 mg/L of Hg(II) with only 0.1% (W/V) concentration of SHP. The SHP has good settling properties and gives clear and odour free effluent. Studies indicate that pH values between 2 and 10 have no effect on the adsorption of Hg(II) on SHP. Light metal ions like Na+, K+, Ca2+ and Mg2+ up to concentrations of 500 mg/L and heavy metals like Cu2+, Zn2+, Cd2+, Co2+, Pb2+, Ni2+, Mn2+, Cr3+, Cr6+, Fe2+ and Fe3+ up to concentrations of 100 mg/L do not interfere with the adsorption process. Anions like sulphate, acetate and phosphate up to concentrations of 200 mg/L do not interfere. Chloride interferes in the adsorption process when Hg(II) concentration is above 9.7 mg/L. The adsorption equilibrium was established within two hours. Studies indicate that adsorption occurs on the surface sites of the adsorbent.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4483
Author(s):  
Yuyingnan Liu ◽  
Xinrui Xu ◽  
Bin Qu ◽  
Xiaofeng Liu ◽  
Weiming Yi ◽  
...  

In this study, corn cob was used as raw material and modified methods employing KOH and KMnO4 were used to prepare activated carbon with high adsorption capacity for mercury ions. Experiments on the effects of different influencing factors on the adsorption of mercury ions were undertaken. The results showed that when modified with KOH, the optimal adsorption time was 120 min, the optimum pH was 4; when modified with KMnO4, the optimal adsorption time was 60 min, the optimal pH was 3, and the optimal amount of adsorbent and the initial concentration were both 0.40 g/L and 100 mg/L under both modified conditions. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir model. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential characterization results showed that the adsorption process is mainly physical adsorption, surface complexation and ion exchange.


2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


10.6036/10212 ◽  
2021 ◽  
Vol DYNA-ACELERADO (0) ◽  
pp. [ 7 pp]-[ 7 pp]
Author(s):  
Julieta Domínguez Soberanes ◽  
PIA BERGER

This study uses orange peel waste to create a biopolymer that can be used for different purposes. In order to achieve this, we evaluated various technologies for the production of the biopolymer, and tried to design the most environmentally friendly process possible. One of the reasons why this bioplastic should be manufactured is to participate in the replacement of common environmental hazardous plastic, which has been banned in many places. On the other hand, using orange peel as the main ingredient is an alternative and gives value to an organic waste that has limited use in circular economy solutions. In this research we present a methodology to create a bioplastic of orange peels. As a result, we obtained a biodegradable, flexible and resistant material to be used in the manufacture of containers, utensils, etc. In addition, it is a material that, given the raw materials used, is considered GRAS (Generally Recognized As Save), implying a non-toxic product that is safe for the consumer.


Sign in / Sign up

Export Citation Format

Share Document