scholarly journals Removal of Methyl Red using Chemical Impregnated Activated Carbon Prepared from Parkia speciosa Pod (Petai) as a Potential Adsorbent

2017 ◽  
Vol 5 (2) ◽  
pp. 62-65
Author(s):  
Rosdayana Mohamad@Muda ◽  
Mohd Zazmiezi Mohd Alias ◽  
Rozidaini Mohd Ghazi

Textile industry is one of the major contributors either in terms of employment or economies.This industry has provided variety of daily necessity such as sources of yarn and clothing.Extensively use of dyes in this textile industry has created water pollution. The serious problemhappened when the daily water usage is from the untreated effluents which are discharged directlyinto water bodies. However, the disposed dyes into environment can be treated with adsorbentssuch as activated carbon via adsorption process. In this study, Parkia speciosa (petai) pods werechosen as the raw material from agricultural waste to produce activated carbon. Activated carbonwas prepared from two different chemicals and application of four different carbonization time.Two parameters studied in the experiment are initial dye concentration and contact time. From theresult, 100% of methyl red was removed by the activated carbon impregnated with zinc chloridesolution at 1 hour carbonization time. The optimum time and initial concentration of dye was 30minutes and 10 ppm respectively with the percentage removal of 100%. Thus, this result couldcontribute some knowledge on the use of alternative adsorbent from agricultural wasteimpregnation with specified chemicals in treating textile industrial wastewater.

2019 ◽  
Vol 79 (7) ◽  
pp. 1357-1366 ◽  
Author(s):  
Rabia Boudia ◽  
Goussem Mimanne ◽  
Karim Benhabib ◽  
Laurence Pirault-Roy

Abstract This work concerns the elimination of the organic pollutant; Bemacid Red (BR), a rather persistent dye present in wastewater from the textile industry in western Algeria, by adsorption on carbon from an agricultural waste in the optimal conditions of the adsorption process. An active carbon was synthesized by treating an agro-alimentary waste, the date stones that are very abundant in Algeria, physically and chemically. Sample after activation (SAA) with phosphoric acid was highly efficient for the removal of BR. The characterization of this porous material has shown a specific surface area that exceeds 900 m2/g with the presence of mesopores. The iodine value also indicates that the activated carbon obtained has a large micro porosity. The reduction of the infrared spectroscopy (FTIR) bands reveals that the waste has been synthesized and activated in good conditions. Parameters influencing the adsorption process have been studied and optimized, such as contact time, adsorbent mass, solution pH, initial dye concentration and temperature. The results show that for a contact time of 60 min, a mass of 0.5 g and at room temperature, the adsorption rate of the BR by the SAA is at its maximum. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were studied to analyse adsorption kinetics. The result shows the adsorption kinetic is best with the pseudo-second-order model. In this study, Langmuir, Freundlich and Temkin isotherms were investigated for adsorption of BR onto SAA. The Freundlich and Temkin isotherms have the highest correlations coefficients. The suggested adsorption process involves multilayer adsorption with the creation of chemical bonds. The mechanism of adsorption of BR by SAA is spontaneous and exothermic, and the Gibbs free energy values confirm that the elimination of the textile dye follows a physisorption.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4483
Author(s):  
Yuyingnan Liu ◽  
Xinrui Xu ◽  
Bin Qu ◽  
Xiaofeng Liu ◽  
Weiming Yi ◽  
...  

In this study, corn cob was used as raw material and modified methods employing KOH and KMnO4 were used to prepare activated carbon with high adsorption capacity for mercury ions. Experiments on the effects of different influencing factors on the adsorption of mercury ions were undertaken. The results showed that when modified with KOH, the optimal adsorption time was 120 min, the optimum pH was 4; when modified with KMnO4, the optimal adsorption time was 60 min, the optimal pH was 3, and the optimal amount of adsorbent and the initial concentration were both 0.40 g/L and 100 mg/L under both modified conditions. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir model. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential characterization results showed that the adsorption process is mainly physical adsorption, surface complexation and ion exchange.


2013 ◽  
Vol 470 ◽  
pp. 11-14 ◽  
Author(s):  
Rui Xin Guo ◽  
Zhi Liang Wang ◽  
Guo Ping Li ◽  
Jian Qiu Chen

The adsorption of cefradine was carried out using biological adsorbents of powder and carbon prepared from orange peels, an agriculture by-product. The equilibrium was easily reached in less than 10 minutes, with adsorption rates of more than 98%. Cefradine showed a firm combination to the adsorbent, which could hardly be damaged or affected by pH values. After equilibrium was reached within 1 h, no desorption behavior was observed in the next 30 minutes. The adsorption process could be well fitted thermodynamically to both Freundlich and Langmuir equations. Similar results could also be obtained using ashes of orange peel, as well as carbon prepared from pistachio and peanut hull, indicating an attractive option to treat industrial wastewater.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 77-84 ◽  
Author(s):  
Z. Ujang ◽  
C.L. Wong ◽  
Z.A. Manan

Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.


2003 ◽  
Vol 21 (5) ◽  
pp. 463-473
Author(s):  
J. Barkauskas ◽  
A. Vinslovaite

The adsorption of polyvinyl alcohol (PVA) on activated carbons was studied in aqueous solutions. Each batch of activated carbon produced was obtained via a definite number of technological operations using wood as the raw material. The adsorption process was studied using a gel chromatography technique with potentiometric titrations being employed for evaluating the chemical composition of the activated carbons produced. The data obtained from the various activated carbon samples were compared to ascertain the adsorption mechanism. It was concluded that water molecules had a limited influence on the competitive process of polymer adsorption. A rather pronounced negative correlation between the number of phenol functional groups and PVA adsorption capacity was observed, indicating that these groups hindered the adsorption process. Assumptions concerning the role of phenol functional groups were made, taking into account not only the surface heterogeneity but also changes in the electron density of the graphene layers in the carbon substrate.


2010 ◽  
Vol 6 (2) ◽  
pp. 1017-1023
Author(s):  
N.R.A. El-Mouhty ◽  
H. M. H. Gad ◽  
A. Y. El-Naggar

This study investigated the applicability of chemically (phosphoric acid) activated bagasse pith and date pits in the adsorption of water pollutants. The textural properties including porous parameters, monolayer equivalent surface area, total pore volumes, average pore radius, Methylene blue number and other physic-chemical characterization were investigated. The activated carbons were analyzed for moisture content, ash content. Ultimate analysis was done by using CHNS analyzer (Cairo University, Micro-analytical Center). To investigate the effect of phosphoric acid on the raw material, thermo gravimetric analysis (TGA) and differential thermo gravimetric (DTG) recordings were determined. The adsorption of heavy metals as pollutants, including Co, Sr, Cu, Cs, Pb, Cd, Ni, Fe, Zn, was studied in a batch experiments. Comparison of date pits activated carbon with commercial activated carbon was done, and the results indicated that using of prepared activated carbon for removal of Co, Sr, Cu, Cs, Pb, Cd, Ni,  Fe, Zn was  more effective than commercial activated carbon.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Swati Korgaonkar ◽  
Swati Korgaonkar

Adsorption of dyes from the effluent is a well-known and feasible method been used in the industry. In the present work we are using corn husk agricultural waste as a sustainable raw material for synthesizing activated carbon using biopolymer carboxyl methyl cellulose for formation of beads. The beads formed are been used for removal of reactive ultra-orange RGB , acid telon yellow FG 01, basic coracryl red C2B. The surface area of beads is 39.87m2 /g. The maximum adsorption of reactive orange RGB , acid telon yellow and basic coracryl red is 68.25mg/g, 72.54mg/g and 30.21mg/g for 50ml of dye solution. The stock solution 0.4g/l of dye solution was prepared for each dye respectively. The beads formed shows a variable pH from 2 to 12 which is favourable for textile effluent. This is a green approach to use the agricultural waste for waste water treatment.


2018 ◽  
Vol 7 (3.34) ◽  
pp. 300
Author(s):  
Gobinath Ravindran ◽  
M Radha Madhavi ◽  
Bashir Suleman Abusahmin

With industrial growth, presence of pollutants is growing enormously. Removal of pollutant from waste water and effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like pH, residence time, initial solution concentration, activated carbon dosage and process temperature on the removal of Zn(II) by palm shell based activated carbon from batch adsorption process are studied systematically. The results reveal that palm shell based activated carbon can be an effective adsorbent for removal of Zinc (II) and is efficient compared to other types of adsorbent produced from agricultural waste.  


Author(s):  
Xiaorong Kang ◽  
Yali Liu ◽  
Can Yang ◽  
Han Cheng

Abstract Dewatered municipal sludge was used as raw material to prepare activated carbon (SAC), and the SAC was modified by walnut shell and nano-titanium dioxide (MSAC). The results showed that the MSAC had a higher specific surface area (SBET) (279.147 m2/g) and total pore volume (VT) (0.324 cm3/g) than the SAC. Simultaneously, the functional groups such as C-O, C = O, and Ti-O-Ti on the surface of MSAC were enhanced due to modification. These physicochemical properties provided prerequisites for the diffusion and degradation of pollutants in MSAC. Furthermore, the MSAC was applied to adsorb amoxicillin (AMX) from aqueous solution, in batch experiments, the maximum removal rate (88.19%) was observed at an initial AMX concentration of 30 mg/L, MSAC dosage of 5.0 g/L, pH of 8, contact time of 180 min, and temperature of 25 °C. In addition, the adsorption process was well described by the Freundlich isotherm model and pseudo-second-order kinetic model, indicating that the adsorption of AMX onto MSAC was dominated by multilayer chemisorption. Also, the adsorption thermodynamics suggested that the adsorption process of AMX onto MSAC was endothermic, feasible and spontaneous.


2010 ◽  
Vol 2 (2) ◽  
pp. 43
Author(s):  
Effendi Arsad

The  activated carbon is very important  for has  processed product activated carbon.   In south Kalimantan has a big prospects due to the big potential of the raw material provided by the nature and industrial waste. There are a lot of raw materials that can be used for the manufacture of activated carbon such as  agricultural waste, sugarcane waste, waste of sawn timber, lives stock waste and coal  processing waste.Manufacture of activated carbon can be done in  ways: chemical  and physical processes. Activation  is very important in the manufacture of activated carbon in addition to the raw materials used. Activated carbon is charcoal that has undergone changes in chemical properties  and physical properties due to be activated with the activator chemical materials or can by heating at high temperatures, so that absorption , surface area, and the ability to absorb become as very good. Activated carbon is used as an absorbent to absorb heavy metals, in medicine and food, on liquor, petroleum chemical, shrimp farming, the sugar industry of gas purification, catalyst and fertilizer processing.Key wood :  technology  processed, activated carbon


Sign in / Sign up

Export Citation Format

Share Document