Effects of Organic Acids on Wettability of Sn-0.3Ag0.7Cu Lead-Free Solder

2014 ◽  
Vol 543-547 ◽  
pp. 3843-3847
Author(s):  
Ming Tang ◽  
Gui Sheng Gan ◽  
Hu Luo ◽  
Shu De Gan ◽  
Qing Meng Wang ◽  
...  

In the assembly of electronic products, developing good organic acid fluxes plays an important role in improving the solderability of lead-free solders. In this paper, a variety of fluxes containing 5% (mass fraction) organic acid activators were prepared. Effects of different activators on the spreading rates of Sn-0.3Ag0.7Cu solder were studied. The results show that: activity of monobasic acids are weak except for benzoic acid; dibasic acids and polybasic acids have relatively strong activity but serious corrosion and slightly less activity persistence. Compounding palmitic acid and adipic acid in the mass ratio of 1:2 as the activator, the average spreading rate of Sn-0.3Ag0.7Cu solder is 71.11% in maximum. Compounding succinic acid and adipic acid in the mass ratio of 3:7 as the activator, the average spreading rate is up to 72.49% in maximum. And solder spots are in-erratic, bright and plump, meeting the quality requirements of electronic micro-connection.

2015 ◽  
Vol 10 (1) ◽  
pp. 2641-2648
Author(s):  
Rizk Mostafa Shalaby ◽  
Mohamed Munther ◽  
Abu-Bakr Al-Bidawi ◽  
Mustafa Kamal

The greatest advantage of Sn-Zn eutectic is its low melting point (198 oC) which is close to the melting point. of Sn-Pb eutectic solder (183 oC), as well as its low price per mass unit compared with Sn-Ag and Sn-Ag-Cu solders. In this paper, the effect of 0.0, 1.0, 2.0, 3.0, 4.0, and 5.0 wt. % Al as ternary additions on melting temperature, microstructure, microhardness and mechanical properties of the Sn-9Zn lead-free solders were investigated. It is shown that the alloying additions of Al at 4 wt. % to the Sn-Zn binary system lead to lower of the melting point to 195.72 ˚C.  From x-ray diffraction analysis, an aluminium phase, designated α-Al is detected for 4 and 5 wt. % Al compositions. The formation of an aluminium phase causes a pronounced increase in the electrical resistivity and microhardness. The ternary Sn-9Zn-2 wt.%Al exhibits micro hardness superior to Sn-9Zn binary alloy. The better Vickers hardness and melting points of the ternary alloy is attributed to solid solution effect, grain size refinement and precipitation of Al and Zn in the Sn matrix.  The Sn-9%Zn-4%Al alloy is a lead-free solder designed for possible drop-in replacement of Pb-Sn solders.  


2015 ◽  
Vol 830-831 ◽  
pp. 265-269
Author(s):  
Satyanarayan ◽  
K.N. Prabhu

In the present work, the bond strength of Sn-0.7Cu, Sn-0.3Ag-0.7Cu, Sn-2.5Ag-0.5Cu and Sn-3Ag-0.5Cu lead free solders solidified on Cu substrates was experimentally determined. The bond shear test was used to assess the integrity of Sn–Cu and Sn–Ag–Cu lead-free solder alloy drops solidified on smooth and rough Cu substrate surfaces. The increase in the surface roughness of Cu substrates improved the wettability of solders. The wettability was not affected by the Ag content of solders. Solder bonds on smooth surfaces yielded higher shear strength compared to rough surfaces. Fractured surfaces revealed the occurrence of ductile mode of failure on smooth Cu surfaces and a transition ridge on rough Cu surfaces. Though rough Cu substrate improved the wettability of solder alloys, solder bonds were sheared at a lower force leading to decreased shear energy density compared to the smooth Cu surface. A smooth surface finish and the presence of minor amounts of Ag in the alloy improved the integrity of the solder joint. Smoother surface is preferable as it favors failure in the solder matrix.


2021 ◽  
Author(s):  
Mohammad Ashraful Haq ◽  
Mohd Aminul Hoque ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract A major problem faced by electronic packaging industries is the poor reliability of lead free solder joints. One of the most common methods utilized to tackle this problem is by doping the alloy with other elements, especially bismuth. Researches have shown Bismuth doped solder joints to mostly fail near the Intermetallic (IMC) layer rather than the bulk of the solder joint as commonly observed in traditional SAC305 solder joints. An understanding of the properties of this IMC layer would thus provide better solutions on improving the reliability of bismuth doped solder joints. In this study, the authors have used three different lead free solders doped with 1%, 2% and 3% bismuth. Joints of these alloys were created on copper substrates. The joints were then polished to clearly expose the IMC layers. These joints were then aged at 125 °C for 0, 1, 2, 5 and 10 days. For each aging condition, the elastic modulus and the hardness of the IMC layers were evaluated using a nanoindenter. The IMC layer thickness and the chemical composition of the IMC layers were also determined for each alloy at every aging condition using Scanning Electron Microscopy (SEM) and EDS. The results from this study will give a better idea on how the percentage of bismuth content in lead free solder affects the IMC layer properties and the overall reliability of the solder joints.


2020 ◽  
Vol 2020 (1) ◽  
pp. 000235-000241
Author(s):  
Fred Fuliang Le ◽  
Rinse van der Meulen ◽  
Yoon Kheong Leong ◽  
Manoj Balakrishnan ◽  
Zunyu Guan

Abstract High melting point (HMP) lead-free solder, hybrid sinter and transient liquidus phase sinter (TLPS) are the emerging lead-free alternatives for the potential replacement of high-lead solder. Lead-free solder is perfectly compatible with existing high-lead soldering processes for clip bond packages. The benefit of hybrid sinter is that it has much higher thermal and electrical conductivity than lead-free or high-lead solder. In this study, ten materials (including lead-free solders, hybrid sinter paste and TLPS) were first evaluated via die shear test. With the initial material screening, two lead-free solders (solder 1 and 2), two hybrid Ag sinter pastes (sinter i and ii) and one TLPS proceeded to internal sample assembly. For the lead-free solders, a process optimization with the aid of vacuum reflow was made to reduce void rate. Due to the slow and unbalanced inter-diffusion of Ag-Cu sintering than Ag-Ag sintering, optimizations to enhance the hybrid Ag sintering include Ag finishing for the die metallization and Ag plating for the clip and bond area of the leadframe. In 0-hour package electrical test, solder 1 and sinter i passed and were sent for reliability testing while solder 2, sinter ii and TLPS failed due to intermetallic compound (IMC) cracking, material bleeding and die cracking, respectively. In the reliability testing, a basic scheme of thermal cycling (TC) 1000 cycles, intermittent operating life (IOL) 750 hrs and highly accelerated temperature and humidity stress test (HAST) 96 hrs was defined for the early feasibility study. 1 of 75 sinter i units failed by TC 1000 cycles due to separation between silver sinter structure and die bottom metallization. Solder 1 passed the basic scheme without defects, and next the material workability and clip bond strength need to be improved to the equivalent level of high-lead solders.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000322-000326
Author(s):  
Jianxing Li ◽  
Daniel Lau ◽  
Pingliang Tu ◽  
Andrew Delano ◽  
Brian Knight

Two lead free solders were developed for die attach application. The bismuth based solder has a melt temperature of 271C and thermal conductivity of 18W/mK. The zinc based solder has a melt temperature of 337C and thermal conductivity of 85W/mK. Both solders have acceptable wetting on bare copper and nickel plated copper substrate, could be processed using modified high lead solder process condition and survived 260C board level reflow simulation. This paper discusses the solder material properties, and presents the die attach process and reliability test results in a manufacturing environment.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


2017 ◽  
Vol 734 ◽  
pp. 194-201 ◽  
Author(s):  
Yutaka Konishi ◽  
Takamoto Itoh ◽  
Masao Sakane ◽  
Fumio Ogawa ◽  
Hideyuki Kanayama

This paper investigates the fatigue results in low cycle fatigue region obtained from a miniaturized specimen having a 6mm gage length, 3mm diameter and 55mm total length. Fatigue tests were performed for two type lead-free solders using horizontal-type electrical servo hydraulic push-pull fatigue testing machine. Materials employed were Sn-3.0Ag-0.5Cu and Sn-5Sb. The results from Sn-3.0Ag-0.5Cu were compared with those obtained using a bulk specimen in a previous study. Relationship between strain range and number of cycles to failure of the small-sized specimen agreed with those of the bulk specimens. The testing techniques are applicable to Sn-5Sb following the Manson-Coffin law. These results confirm that the testing technique proposed here, using small-sized specimen, is suitable to get fruitful fatigue data for lead-free solder compounds.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 289 ◽  
Author(s):  
Meng Zhang ◽  
Ke-ke Zhang ◽  
Fu-peng Huo ◽  
Hui-gai Wang ◽  
Yang Wang

Composite solder is a promising route to improve the properties and reliability of Sn-based lead-free solder. In this study, Cu-coated graphene nanosheets (Cu-GNSs) were synthesized using pyrolysis. Cu-GNSs reinforced Sn2.5Ag0.7Cu0.1RE composite lead-free solders were prepared via powder metallurgy. The size, distribution, and adsorption type of Cu nanoparticles on the GNSs were studied. The relation of the Cu-GNSs content and microstructure to the physical, wettability, and mechanical properties of composite solders was discussed. The results show that Cu nanoparticles (with a mean size of 13 nm) present uniform distribution and effective chemisorptions on the GNS. Microstructural evolution of composite solders is dependent on the addition of Cu-GNSs. With increasing Cu-GNSs addition, β-Sn grains become finer and the eutectic phase proportion becomes larger, while the morphology of the eutectic phase transforms from dispersion to network-type. The improvement of the tensile strength of the composite solder can be attributed to grain refinement and load transfer. While the existence of Cu-GNSs can effectively improve the wettability and slightly change the melting point, it can also lead to the decline of elongation and electrical conductivity of the composite solder.


2016 ◽  
Vol 857 ◽  
pp. 3-7 ◽  
Author(s):  
Ramani Mayappan ◽  
Nur Nadiah Zainal Abidin ◽  
Noor Asikin Ab Ghani ◽  
Iziana Yahya ◽  
Norlin Shuhaime

Due to environmental concerns, lead-free solders were introduced to replace the lead-based solders in microelectronics devices technology. Although there are many lead-free solders available, the Sn-Ag-Cu solders are considered the best replacement due to their good wettability and joint strength. Although the Sn-Ag-Cu solders are accepted widely, but there are still some room for improvement. In this study, 1wt% Zn, which can be considered high percentage for a dopant, was added into the solder via powder metallurgy route. The effects of adding this dopant into the Sn-3.5Ag-1.0Cu solder on the interface intermetallic and thickness were investigated. The intermetallics phases formed were observed under Scanning Electron Microscope (SEM) and their thicknesses were measured. The SEM results showed the presence of Cu6Sn5, Cu3Sn and (Cu,Zn)6Sn5 intermetallics. It can be concluded that Zn behaved as retarding agent and significantly retarded the growth of Cu-Sn intermetallics.


Author(s):  
M. Pei ◽  
J. Qu

Solders are used extensively as electrical interconnects in microelectronics packaging. Because of environmental concerns, lead-based solders are being replaced by Sn/Ag and Sn/Ag/Cu based solder materials. Since the thermomechanical reliability of modern electronic devices depends on, to a large extent, the fatigue and creep behavior of the solder joints, it is imperative to understand the deformation behavior of these new lead-free solders. This study conducted extensive thermomechanical testing on several commercial lead-free solder alloys. Anand viscoplastic model was used to describe the behavior of these materials with new curve fitting techniques. A modified Anand models was proposed that can yield a more accurate description of lead-free solders.


Sign in / Sign up

Export Citation Format

Share Document