The Effect of Guide Sleeves on Shear Behavior of 3D Weaving Composites

2014 ◽  
Vol 597 ◽  
pp. 89-94 ◽  
Author(s):  
Xiao Chuan Wu ◽  
Zhong De Shan ◽  
Feng Liu ◽  
Yuan Wang

In this study, guide sleeves are brought into 3D weaving composite preforms. The process vacuum assisted resin infusion (VARI) was used to fabricate the 3D weaving composite with guide sleeves. The load-deflection curves and shear behaviors of the 3D weaving composites with guide sleeves were obtained by means of the 3-point bending test. The fracture micrographs of the materials were studied by SEM. The effects of guide sleeves’ diameter and interval on the shear behavior and fracture mechanisms of the 3D weaving composites were analyzed. The results showed that the guide sleeves could prevent delamination effectively by bridging fiber layer and pinning crack extending along the fiber layer. Fracture toughness of the composite parts increase because of deformation, fracture of guide sleeves and debonding of interface. The diameter and interval of guide sleeves is smaller, which means the volume fraction of guide sleeves is higher, the interlaminar shear strength higher for the bridging is stronger.

2021 ◽  
Vol 60 (1) ◽  
pp. 15-24
Author(s):  
Silu Liu ◽  
Yonghao Zhao

Abstract Metals with a bimodal grain size distribution have been found to have both high strength and good ductility. However, the coordinated deformation mechanisms underneath the ultrafine-grains (UFGs) and coarse grains (CGs) still remain undiscovered yet. In present work, a bimodal Cu with 80% volume fraction of recrystallized micro-grains was prepared by the annealing of equal-channel angular pressing (ECAP) processed ultrafine grained Cu at 473 K for 40 min. The bimodal Cu has an optimal strength-ductility combination (yield strength of 220 MPa and ductility of 34%), a larger shear fracture angle of 83∘ and a larger area reduction of 78% compared with the as-ECAPed UFG Cu (yield strength of 410 MPa, ductility of 16%, shear fracture angle of 70∘, area reduction of 69%). Grain refinement of recrystallized micro-grains and detwinning of annealing growth twins were observed in the fractured bimodal Cu tensile specimen. The underlying deformation mechanisms for grain refinement and detwinning were analyzed and discussed.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1323
Author(s):  
Chenyang Hou ◽  
Shouyin Zhang ◽  
Zhijian Ma ◽  
Baiping Lu ◽  
Zhenjun Wang

Ti/Ti–Al and SiCf-reinforced Ti/Ti–Al laminated composites were fabricated through vacuum hot-pressure using pure Ti foils, pure Al foils and SiC fibers as raw materials. The effects of SiC fiber and a laminated structure on the properties of Ti–Al laminated composites were studied. A novel method of fiber weaving was implemented to arrange the SiC fibers, which can guarantee the equal spacing of the fibers without introducing other elements. Results showed that with a higher exerted pressure, a more compact structure with fewer Kirkendall holes can be obtained in SiCf-reinforced Ti/Ti–Al laminated composites. The tensile strength along the longitudinal direction of fibers was about 400 ± 10 MPa, which was 60% higher compared with the fabricated Ti/Ti–Al laminated composites with the same volume fraction (60%) of the Ti layer. An in situ tensile test was adopted to observe the deformation behavior and fracture mechanisms of the SiCf-reinforced Ti/Ti–Al laminated composites. Results showed that microcracks first occurred in the Ti–Al intermetallic layer.


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1311 ◽  
Author(s):  
Fabio da Costa Garcia Filho ◽  
Fernanda Santos da Luz ◽  
Lucio Fabio Cassiano Nascimento ◽  
Kestur Gundappa Satyanarayana ◽  
Jaroslaw Wieslaw Drelich ◽  
...  

Natural lignocellulosic fibers and corresponding fabrics have been gaining notoriety in recent decades as reinforcement options for polymer matrices associated with industrially applied composites. These natural fibers and fabrics exhibit competitive properties when compared with some synthetics such as glass fiber. In particular, the use of fabrics made from natural fibers might be considered a more efficient alternative, since they provide multidirectional reinforcement and allow the introduction of a larger volume fraction of fibers in the composite. In this context, it is important to understand the mechanical performance of natural fabric composites as a basic condition to ensure efficient engineering applications. Therefore, it is also important to recognize that ramie fiber exhibiting superior strength can be woven into fabric, but is the least investigated as reinforcement in strong, tough polymers to obtain tougher polymeric composites. Accordingly, this paper presents the preparation of epoxy composite containing 30 vol.% Boehmeria nivea fabric by vacuum-assisted resin infusion molding technique and mechanical behavior characterization of the prepared composite. Obtained results are explained based on the fractography studies of tested samples.


2011 ◽  
Vol 391-392 ◽  
pp. 1445-1449
Author(s):  
Chun Hua Zhang ◽  
Shi Lin Luan ◽  
Xiu Song Qian ◽  
Bao Hua Sun ◽  
Wen Sheng Zhang

The influences of low temperature on the interlaminar properties for PBO fiber/epoxy composites have been studied at liquid nitrogen temperature (77 K) in terms of three point bending test. Results showed that the interlaminar shear strength at 77 K were significantly higher than those at room temperature (RT). For the analysis of the test results, the tensile behaviors of epoxy resin at both room temperature and liquid nitrogen temperature were investigated. The interface between fiber and matrix was observed using SEM images.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 208
Author(s):  
O.F. Pacheco-Salazar ◽  
Shuichi Wakayama ◽  
L.A. Can-Herrera ◽  
M.A.A. Dzul-Cervantes ◽  
C.R. Ríos-Soberanis ◽  
...  

In this research, damage in bone cements that were prepared with core-shell nanoparticles was monitored during four-point bending tests through an analysis of acoustic emission (AE) signals. The core-shell structure consisted of poly(butyl acrylate) (PBA) as rubbery core and methyl methacrylate/styrene copolymer (P(MMA-co-St)) as a glassy shell. Furthermore, different core-shell ratios 20/80, 30/70, 40/60, and 50/50 were prepared and incorporated into the solid phase of the bone cement formulation at 5, 10, and 15 wt %, respectively. The incorporation of a rubbery phase into the bone cement formulation decreased the bending strength and bending modulus. The AE technique revealed that the nanoparticles play an important role on the fracture mechanism of the bone cement, since a higher amount of AE signals (higher amplitude and energy) were obtained from bone cements that were prepared with the nanoparticles in comparison with those without nanoparticles (the reference bone cement). The SEM examination of the fracture surfaces revealed that all of the bone cement formulations exhibited stress whitening, which arises from the development of crazes before the crack propagation. Finally, the use of the AE technique and the fracture surface analysis by SEM enabled insight into the fracture mechanisms that are presented during four-point bending test of the bone cement containing nanoparticles.


2001 ◽  
Author(s):  
Jay R. Sayre ◽  
Alfred C. Loos

Abstract Vacuum assisted resin transfer molding (VARTM) has shown potential to significantly reduce the manufacturing cost of high-performance aerospace composite structures. In this investigation, high fiber volume fraction, triaxially braided preforms with through-the-thickness stitching were successfully resin infiltrated by the VARTM process. The preforms, resin infiltrated with three different resin systems, produced cured composites that were fully wet-out and void free. A three-dimensional finite element model was used to simulation resin infusion into the preforms. The predicted flow patterns agreed well with the flow pattern observed during the infiltration process. The total infiltration times calculated using the model compared well with the measured times.


1996 ◽  
Vol 5 (4) ◽  
pp. 096369359600500
Author(s):  
J Ziao ◽  
J Tao

In this paper, we directed our attention to the interlaminar defects and their influence on the interlaminar strengths. With the aid of a S-570 scanning electron microscope, the morphology and distribution of interlaminar defects were inspected and documented. According to their shape, size and cause of formation, the defects were classified into five types: flakiness void, irregular shaped debond, local imperfectly cured resin, debond in two multi-directional plies, and inhomogeneous fibers and the large scale debond by these fibers. The cause of defects formation was discussed by analyzing the manufacturing process of composites. The influence of defects on the interlaminar strength and its mechanism was analyzed experimentally and theoretically. The results indicate that these defects, with different effects, decrease the interlaminar strength because they form interlaminar cracks, and the interlaminar shear strength is less affected than interlaminar tensile strength, which is measured according to GB4944 test method. To comprehend defects distribution effect, a four-point-bending test method was introduced to measure the interlaminar peel strength, and a discussion was made on the correlation between the interlaminar tensile strength, interlaminar peel strength and in-plane transverse tensile strength. Finally the concept of interlaminar defect coefficient, which can be used to characterize the defects, was set up and the formula to calculate it was proposed.


2005 ◽  
Vol 297-300 ◽  
pp. 207-212 ◽  
Author(s):  
Soon Chul Kwon ◽  
Tadaharu Adachi ◽  
Wakako Araki ◽  
Akihiko Yamaji

We investigated the particle size effects on the fracture toughness of epoxy resin composites reinforced with spherical-silica particles. The silica particles had different mean particle diameters of between 1.56 and 0.24µm and were filled with bisphenol A-type epoxy resin under different mixture ratios of small and large particles and a constant volume fraction for all particles of 0.30. As the content with the added smaller particle increased, the viscosity of each composite before curing remarkably increased. We conducted the single edge notched bending test (SENB) to measure the mode I fracture toughness of each composite. The fracture surface with the small particle content exhibited more rough areas than the surface with larger particles. The fracture toughness increased below the small particle content of 0.8 and saturated above it. Therefore, near the small particle content of 0.8, the composite had a relatively low viscosity and a high fracture toughness.


2015 ◽  
Vol 50 (8) ◽  
pp. 1073-1084 ◽  
Author(s):  
Xin Wang ◽  
Xing Zhao ◽  
Zhishen Wu ◽  
Zhongguo Zhu ◽  
Zihao Wang

Sign in / Sign up

Export Citation Format

Share Document