Unconventional Gas Development and Prospect in China

2014 ◽  
Vol 675-677 ◽  
pp. 1546-1550
Author(s):  
De Xun Liu ◽  
Hong Yan Wang ◽  
Qun Zhao ◽  
Ying Liu ◽  
Lei Dong

Many countries in the world begin to attach great importance to the utilization of the unconventional gas. The resources of unconventional gas in China are abundant. The development of unconventional gas is still in the early stage. Tight gas enters large scale and commercializing stage. Shale gas is in the initial stage of commercialization. There are mainly three challenges need to confront, uncertainties of unconventional gas resources, key technology with low cost and environmental pollution. So in the future, resource evaluation, engineering technologies and environmental technologies need to be strengthened in China. Tight gas is the most realistic resources to develop in China and the development and utilization of shale gas is the most anticipated. In the next ten or twenty years, the production of unconventional gas in China will increase considerably and play a major role in national hydrocarbon resources.

2013 ◽  
Vol 807-809 ◽  
pp. 2115-2119 ◽  
Author(s):  
De Xun Liu ◽  
Hong Yan Wang ◽  
Qun Zhao ◽  
De Lai Liu

Many countries in the world begin to attach great importance to the utilization of the unconventional gas. The unconventional gas resources are very abundant in China. The development of Unconventional Gas is still in the early stage. Tight gas enters large scale and commercializing stage. Coalbed methane (CBM) is in the initial stage of commercialization, and shale gas is in the stage of resource evaluation and technology study. There are mainly three challenges need to confront, uncertainties of unconventional gas resources, key technology with low cost and environmental pollution. So in the future, resource evaluation, engineering technologies and environmental technologies in China need to be strengthened.


2016 ◽  
Vol 723 ◽  
pp. 572-578
Author(s):  
Li Fu ◽  
Qi Chi Le ◽  
Xi Bo Wang ◽  
Xuan Liu ◽  
Wei Tao Jia

In recent years, the development and utilization of renewable generation have attracted more and more attention, and the grid puts forward higher requirements to the energy storage technology, especially for security, stability and reliability. The liquid metal battery (LMB) consists of two liquid metal electrodes and a molten salt electrolyte, which will be segregated into three liquid layers naturally. Being low-cost and long-life, it is regarded as the best choice for grid-level large-scale energy storage. This paper describes the main structure and working principle of the LMB, analyzes the advantages and disadvantages of the LMB when compared with the traditional batteries, and explores the feasibility and economy when it is used as a kind of large-scale energy storage applied in the power grid. The paper also makes a comprehensive comparison on the performance of several LMBs, and points out the LMB’s research and development in the future.


2013 ◽  
Vol 16 (04) ◽  
pp. 443-455 ◽  
Author(s):  
O.M.. M. Olorode ◽  
C.M.. M. Freeman ◽  
G.J.. J. Moridis ◽  
T.A.. A. Blasingame

Summary Various models featuring horizontal wells with multiple fractures have been proposed to characterize flow behavior over time in tight gas systems and shale-gas systems. Currently, little is known about the effects of nonideal fracture patterns and coupled primary-/secondary-fracture interactions on reservoir performance in unconventional gas reservoirs. We developed a 3D Voronoi mesh-generation application that provides the flexibility to accurately represent various complex and irregular fracture patterns. We also developed a numerical simulator of gas flow through tight porous media, and used several Voronoi grids to assess the potential performance of such irregular fractures on gas production from unconventional gas reservoirs. Our simulations involved up to a half-million cells, and we considered production periods that are orders of magnitude longer than the expected productive life of wells and reservoirs. Our aim was to describe a wide range of flow regimes that can be observed in irregular fracture patterns, and to fully assess even nuances in flow behavior. We investigated coupled primary/secondary fractures, with multiple/vertical hydraulic fractures intersecting horizontal secondary "stress-release" fractures. We studied irregular fracture patterns to show the effect of fracture angularity and nonplanar fracture configurations on production. The results indicate that the presence of high-conductivity secondary fractures results in the highest increase in production, whereas, contrary to expectations, strictly planar and orthogonal fractures yield better production performance than nonplanar and nonorthogonal fractures with equivalent propped-fracture lengths.


2012 ◽  
Vol 616-618 ◽  
pp. 250-256 ◽  
Author(s):  
Ded Xun Liu Liu ◽  
Hong Yan Wang ◽  
Qun Zhao ◽  
Hong Lin Liu

Many countries in the world begin to attach great importance to the utilization of the unconventional gas. In some areas, tight gas, Coalbed methane (CBM) and shale gas have came into commercial development. The unconventional gas resources are very abundant in China. They developed rapidly in recent years, and some progress has been made. CBM in Qinshui Basin has been commercially developed successfully. Shale gas resource is also very abundant and has a good development prospect. Besides, the gas hydrate has a great potential in resources.


2012 ◽  
Vol 2 (3) ◽  
Author(s):  
Zhichuan Xu ◽  
Zhuanfang Bi ◽  
Chengmin Shen

AbstractNanomaterials play an important role in modern science and engineering. The ability to fabricate nanomaterials with high quality and low cost is a primary stage for further discovering their applications. This research article presents a facile fabrication of Cu2O nanowires on Cu substrate. It was found that simply heating Cu in air leads to the growth of Cu2O nanowires. The Cu2O nanowires are aligned in one direction and vertically grown on the Cu substrate. The growth process of nanowires was tracked by SEM and the root at the initial stage was observed by HRTEM. The access to oxygen is critical to the growth of Cu2O nanowires and the patterned nanowire arrays can be readily fabricated by using a mask. The method reported here offers a great potential route toward a large scale manufacture of Cu2O nanowires.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ziya Zhang ◽  
Kun Zhang ◽  
Yan Song ◽  
Zhenxue Jiang ◽  
Shu Jiang ◽  
...  

Similar to North America, China has abundant shale resources. Significant progress has been made in the exploration and exploitation of shale gas in China since 2009. As the geological theory of unconventional oil and gas was proposed, scientists have started researching conditions for shale gas preservation. The shale roof and floor sealing and the shale self-sealing are the critical objects of such research, which, however, are still in the initial stage. This article studies the formation mechanism of shale roof and floor sealing and shale self-sealing by taking marine shales from Member I of the upper Ordovician Wufeng Formation–lower Longmaxi Formation in the upper Yangtze region as the research object. Analyses were performed on the TOC content, mineral composition, and porosity, as well as the FIB-SEM, FIB-HIM, and gas permeability experiments on the core samples collected from the marine shales mentioned above. The conclusions are as follows: for the sealings of shale roof and floor, the regional cap rocks, roof, and floor provide sealing for shales due to physical property differences. For the self-sealing of shales, the second and third sub-members of Member I of the Wufeng Formation–Longmaxi Formation mainly develop clay mineral pores which are dominated by macropores with poor connectivity, while the first sub-member of Member I of the Wufeng Formation–Longmaxi Formation mainly develops organic-matter pores, which are dominated by micropores and mesopores with good connectivity. Owing to the connectivity difference, the second and third sub-members provide sealing for the first sub-member, while the methane adsorption effect of shales can inhibit large-scale shale gas migration as it decreases the gas permeability; thus, the organic-rich shales from the first sub-member of Member I of the Wufeng Formation–Longmaxi Formation provides sealing for itself.


Author(s):  
V. P. Chepil

Features of structural conditions of occurrence, gas accumulation, lithofacies, petrophysical and geochemical parameters, shielding factor, character-bearing shale gas saturation are fundamentally different from traditional gas deposits. Stratigraphic shale formation considered as a potential gas deposit. Considering this specificity its allocation and mapping must be executed at an early stage. To delineate gas bearing shale formations of Volyno-Podillia and allocation the most perspective areas offered a complexation of regional seismic survey 2D for great depths (two longitudal profiles of north-western stretch as it continued from the Lublin basin in Poland and 5 crosssections from southwest to the northeast with its total length of about 1500 linear kilometers) with electric prospecting methods of different modifications, caused polarization, electromagnetic methods of regional seismic exploration grids profiles, large-scale atmogeochemical shooting and other direct methods. As the completion of regional stage must be drilling of vertical parametric pilot wells with solid coring from perspective shale strata, laboratory studies of organic matter, of katagenesis, lithofacies and mineralogical composition of shales, their petrophysical and geochemical properties, modeling and testing perspective shale strata using multistage hydrogaps. Prospects of further exploration and it’s complex based on the results geologic-economic evaluation of perspective of petrogas of the region and obtaining results of works start-up phase.


Author(s):  
C. Vannuffel ◽  
C. Schiller ◽  
J. P. Chevalier

Recently, interest has focused on the epitaxy of GaAs on Si as a promising material for electronic applications, potentially for integration of optoelectronic devices on silicon wafers. The essential problem concerns the 4% misfit between the two materials, and this must be accommodated by a network of interfacial dislocations with the lowest number of threading dislocations. It is thus important to understand the detailed mechanism of the formation of this network, in order to eventually reduce the dislocation density at the top of the layers.MOVPE growth is carried out on slightly misoriented, (3.5°) from (001) towards , Si substrates. Here we report on the effect of this misorientation on the interfacial defects, at a very early stage of growth. Only the first stage, of the well-known two step growth process, is thus considered. Previously, we showed that full substrate coverage occured for GaAs thicknesses of 5 nm in contrast to MBE growth, where substantially greater thicknesses are required.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


2009 ◽  
Vol 160 (5) ◽  
pp. 114-123 ◽  
Author(s):  
Daniel Otto ◽  
Sven Wagner ◽  
Peter Brang

The competitive pressure of naturally regenerated European beech (Fagus sylvatica) saplings on planted pedunculate oak (Quercus robur) was investigated on two 1.8 ha permanent plots near Habsburg and Murten (Switzerland). The plots were established with the aim to test methods of artificial oak regeneration after large-scale windthrow. On both plots, 80 oaks exposed to varying levels of competitive pressure from at most 10 neighbouring beech trees were selected. The height of each oak as well as stem and branch diameters were measured. The competitive pressure was assessed using Schütz's competition index, which is based on relative tree height, crown overlap and distance from competing neighbours. Oak trees growing without or with only slight competition from beech were equally tall, while oaks exposed to moderate to strong competition were smaller. A threshold value for the competition index was found above which oak height decreased strongly. The stem and branch diameters of the oaks started to decrease even if the competition from beech was slight, and decreased much further with more competition. The oak stems started to become more slender even with only slight competition from beech. On the moderately acid beech sites studied here, beech grow taller faster than oak. Thus where beech is competing with oak and the aim is to maintain the oak, competitive pressure on the oak must be reduced at an early stage. The degree of the intervention should, however, take the individual competitive interaction into account, with more intervention if the competition is strong.


Sign in / Sign up

Export Citation Format

Share Document