Prediction of Steel Bar Corrosion of RC Members Deteriorated by Pre-Existed Chloride and Concrete Carbonation

2015 ◽  
Vol 723 ◽  
pp. 410-418
Author(s):  
Xin Xue ◽  
Wen Xiong ◽  
Hui Chao Wang ◽  
Cong Zhou Shen

By simulating solo or combined deterioration action of pre-existed chloride and concrete carbonation, this paper carried out an experimental investigation on the corrosion state of steel bars embedded in concrete with different concrete cover thicknesses and containing different chloride amounts. Comparisons of corrosion current density, corrosion area ratio and corrosion weigh loss of embedded steel bars were made and the effect of combined action was systematically studied. Test results indicated that under the combined action, the corrosion current density measured soon after concrete carbonation test increased with the total chloride amount containing in cover concrete, and the specimens under the combined action exhibited larger value of corrosion current density, corrosion area ratio and mass weight loss than that of the specimens subjected to the solo action. It was further indicated that the mass loss ratio of embedded steel bars at the point of corrosion crack initiation was 1.29% for the specimens with 5mm concrete cover, and the corresponding value of the specimens with 10mm concrete cover was 1.33%.

2017 ◽  
Vol 744 ◽  
pp. 114-120
Author(s):  
Kyung Man Moon ◽  
Sung Yul Lee ◽  
Jae Hyun Jeong ◽  
Myeong Hoon Lee

In this study, seven types of mortar test specimens were manufactured with parameters, that is, the surface of the reinforced steel bar was treated with hot dip galvanizing (Zn) and the surface of the test specimen was coated with underwater paint, and four types of inhibitors (DAW, MCI, DCI, and Silcon) were added in mortars respectively. And, the seven types of mortar test specimens were immersed in seawater for 4 years. The corrosion properties of the reinforced steel bars embedded in mortar test specimens were investigated using electrochemical methods. The corrosion potentials of the test specimens with painting on the surface of the specimen and Zn coating on the surface of the steel bar exhibited the noblest and lowest values respectively after one year, however, after 4 years, the specimens of underwater painting and of addition of Silcon inhibitor indicated the noblest and lowest values of corrosion potentials respectively. Furthermore, the painting specimen exhibited the smallest values of corrosion probability as welll as of the corrosion current density, while, addition of MCI inhibitor showed the highest values of both corrosion probability and corrosion current density. Moreover, the painting specimen showed the smallest value of neutralization degree among all the specimens, and the largest value of neutralization degree was observed at the specimen of natural condition (no adding of inhibitor, no painting and no Zn coating). As a result, it is considered that the addition of inhibitors, coating with hot dip galvanizing (Zn), and painting on the surface have the effects not only to inhibit the neutralization degree but also to increase the corrosion resistance of the embedded steel bar.


2020 ◽  
Vol 10 (3) ◽  
pp. 1089 ◽  
Author(s):  
Wioletta Raczkiewicz ◽  
Artur Wójcicki

The electrochemical galvanostatic pulse method (GPM) is used for the evaluation of the degree of corrosion risk of reinforcement in concrete. This non-destructive method enables determining the corrosion promoting conditions through the measurements of reinforcement stationary potential and concrete cover resistivity, and determining the probability of reinforcement corrosion in the tested areas. This method also allows for the estimation of the reinforcement corrosion activity and the prediction of the development of the corrosion process on the basis of corrosion current density measurements. The ambient temperature (and the temperature of the examined element) can significantly affect the values of the measured parameters due to electrochemical character of the processes as well as specific measurement technique. Differences in the obtained results can lead to a wrong interpretation of reinforcement corrosion risk degree in concrete. The article attempts to assess the effect of temperature on the measured parameters while using the galvanostatic pulse method. The GP-5000 GalvaPulseTM set was used. The results of this study confirmed the impact of temperature changes on the values of three measured parameters (reinforcement stationary potential, concrete cover resistivity, and corrosion current density) and contributed to catching the trend of these changes.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 628
Author(s):  
Soon-Hyeok Jeon ◽  
Geun Song ◽  
Sang Kim ◽  
Do Hur

The effect of temperature on the galvanic corrosion behavior of SA106 Gr.B carbon-manganese steel was studied in an alkaline aqueous solution at various temperatures (30, 60, and 90 °C) via electrochemical corrosion tests. At all temperatures studied, carbon-manganese steel acted as the anode of the galvanic cell composed of carbon-manganese steel and magnetite because the corrosion potential of carbon-manganese steel was significantly lower than that of magnetite. The corrosion current density of carbon-manganese steel significantly increased due to the galvanic effect irrespective of temperature used in this study. With the increase in temperature, the extent of the galvanic effect on the corrosion current density of carbon-manganese steel and reductive dissolution of magnetite gradually increased. When the area ratio of magnetite to carbon-manganese steel increased, the corrosion rate of the carbon-manganese steel in contact with magnetite further increased.


2019 ◽  
Vol 31 (3) ◽  
Author(s):  
Sristi Das Gupta ◽  
Takafumi Sugiyama ◽  
Md Shafiqul Islam

Steel reinforcement in concrete containing fly ash has been practically employed to RC structures in snowy cold region and coastal areas so that the durability of the structures against corrosion can be enhanced. In this research to make the compatibility with RC slab bridge sodium chloride solution of 10[WU1] % in concentration was applied on RC slab and corrosion development was monitored by electrochemical method. Applying fly ash in RC slab at two replacement levels of 15[WU2] % (F15) and 30% (F30) of cement the specimens were observed. The observation result verified that fly ash concrete showed longer period of corrosion initiation (ASTM C876) than normal reinforced concrete. The initiation period of corrosion was 4.5 and 6 times longer for F15 and F30 concrete than normal concrete, as well as 91 days strength of F30 concrete was about 14% higher that of norma concrete. Test result showed that fly ash has better influence on steel corrosion reduction than concrete cover increment. It was observed that fly ash concrete (F15 and F30) with 3 cm concrete cover has better corrosion resistivity than using 4 cm cover of non-fly ash concrete. Furthermore, using the same concrete cover (3 cm) it was found that the actual corrosion rate was decreased about 68 to 82% by adding fly ash 15 to 30% respectively compared to normal reinforced concrete. In addition, a significant attenuation in corrosion area in rebar between fly ash concrete and normal concrete was found. Based on actual corrosion area on rebar surface, actual corrosion current density was larger than corrosion current density found from non-destructive way. Moreover, further analysis was conducted for characterization of different corrosion products using Raman spectroscopy with 532 nm wave length. It revealed that the corrosion product (Oxides and Oxyhydroxides compound) were less in F15 and F30 concrete compared to normal concrete. Considering these results, the possibility of reduction of chloride induced corrosion in reinforced concrete structure using fly ash has confirmed. 


2020 ◽  
Vol 9 (1) ◽  
pp. 496-502 ◽  
Author(s):  
Zhaohui Zhang ◽  
Bailong Liu ◽  
Mei Wu ◽  
Longxin Sun

AbstractThe electrochemical behavior of gold dissolution in the Cu2+–NH3–S2O32−–EDTA solution has been investigated in detail by deriving and analyzing the Tafel polarization curve, as this method is currently widely implemented for the electrode corrosion analysis. The dissolution rate of gold in Cu2+–NH3–S2O32−–EDTA solution was determined based on the Tafel polarization curves, and the effects of various compound compositions in a Cu2+–NH3–S2O32−–EDTA mixture on the corrosion potential and corrosion current density were analyzed. The results showed that the corrosion potential and polarization resistance decreased, whereas the corrosion current density increased for certain concentrations of S2O32−–NH3–Cu2+ and EDTA, indicating that the dissolution rate of gold had changed. The reason for promoting the dissolution of gold is also discussed.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 397 ◽  
Author(s):  
Hehong Zhang ◽  
Xiaofeng Zhang ◽  
Xuhui Zhao ◽  
Yuming Tang ◽  
Yu Zuo

A chemical conversion coating on 5052 aluminum alloy was prepared by using K2ZrF6 and K2TiF6 as the main salts, KMnO4 as the oxidant and NaF as the accelerant. The surface morphology, structure and composition were analyzed by SEM, EDS, FT–IR and XPS. The corrosion resistance of the conversion coating was studied by salt water immersion and polarization curve analysis. The influence of fluorosilane (FAS-17) surface modification on its antifouling property was also discussed. The results showed that the prepared conversion coating mainly consisted of AlF3·3H2O, Al2O3, MnO2 and TiO2, and exhibited good corrosion resistance. Its corrosion potential in 3.5 wt % NaCl solution was positively shifted about 590 mV and the corrosion current density was dropped from 1.10 to 0.48 μA cm−2. By sealing treatment in NiF2 solution, its corrosion resistance was further improved yielding a corrosion current density drop of 0.04 μA cm−2. By fluorosilane (FAS-17) surface modification, the conversion coating became hydrophobic due to low-surface-energy groups such as CF2 and CF3, and the contact angle reached 136.8°. Moreover, by FAS-17 modification, the corrosion resistance was enhanced significantly and its corrosion rate decreased by about 25 times.


2010 ◽  
Vol 663-665 ◽  
pp. 473-476
Author(s):  
Shu Qi Zheng ◽  
Chang Feng Chen ◽  
Rui Jing Jiang ◽  
Dan Ni Wang

In the environment with H2S/CO2 or Na2S, the corrosion behavior of Lanthanum hexaboride (LaB6) was investigated by electrochemistry methods. The results indicated that the corrosion potential (Ecorr) and Rf of LaB6 increased as the partial pressure of H2S increased, while the corrosion current density (Icorr) decreased. In the environment containing Na2S, as the content of Na2S increased, the corrosion potential (Ecorr) and Rf of LaB6 decreased, while the corrosion current density (Icorr) increased. Thus, the addition of H2S into the environment with H2S/CO2 would inhibit the corrosion of LaB6; while in the environment containing Na2S, the increasing of the content of Na2S would accelerate the corrosion of LaB6.


2014 ◽  
Vol 61 (3) ◽  
pp. 158-165 ◽  
Author(s):  
Shamsad Ahmad

Purpose – The purpose of this paper was to explore the possibility of establishing an empirical correlation between concrete resistivity and reinforcement corrosion rate utilizing the experimental data generated by measuring corrosion current density of reinforced concrete specimens subjected to chloride-induced corrosion at different levels of concrete resistivity. Design/methodology/approach – To generate concrete resistivity vs corrosion current density data in a wide range, ten reinforced concrete specimens were prepared and allowed to corrode under severe chloride exposure. After significantly corroding the specimens, they were removed from the chloride exposure and were subjected to different moisture levels for achieving variation in the resistivity of concrete so that reasonably good number of resistivity vs corrosion rate data can be obtained. Resistivity and corrosion current density tests were conducted for all the ten specimens and their values were measured in wide ranges of 0.8-65 kΩ·cm and 0.08-11 μA/cm2, respectively. Findings – Data generated through this study were utilized to obtain an empirical relationship between concrete resistivity and corrosion current density. The trend of results obtained using the empirical correlation model developed in the present study was in close agreement with that obtained using a theoretical model reported in literature. Originality/value – The empirical correlation between concrete resistivity and reinforcement corrosion rate obtained under this work can be used for evaluation of reinforcement corrosion utilizing the resistivity values measured non-destructively.


Sign in / Sign up

Export Citation Format

Share Document