A Study on Corrosion Behavior of Carbon Steel in Artificial Solution of Geopolymer Paste by Open Circuit Potential

2015 ◽  
Vol 754-755 ◽  
pp. 892-896 ◽  
Author(s):  
Farah Farhana Zainal ◽  
Kamarudin Hussin ◽  
Azmi Rahmat ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Andrei Victor Sandu

This paper presents an experimental study on corrosion of carbon steel as reinforcement bar in artificial solution of geopolymer paste by Open Circuit Potential (OCP). The OCP measurements have been used in reinforcement bar concrete studies for many years to determine the corrosion behavior of materials. OCP is the potential of the working electrode relative to the reference electrode when no current or potential is being applied to cell. The OCP of reinforcement bar was recorded with time and this experiment has been done for 30 days. A copper/copper sulfate (Cu/CuSO4) reference electrode with a potential V-SHE of +0.318 V (at 25oC) was used in this study. The pH of geopolymer concrete was observed to be in the range of 11.5 to 12.5 depending on the formulations. Thus, in this study the artificial solutions of geopolymer paste that were used are pH 11, pH 12 and pH 13. It has been found that the potential values of three solutions were fluctuated from the beginning until day 30. The highest potential value was indicated by pH 13 whereas the maximum value is 0.542 V and minimum value is 0.205 V while pH 11 shows the lowest potential value with the maximum value 0.356 V and the minimum value-0.047 V. However, all the redox potential values for pH 11, pH 12 and pH 13 were located at passivity region, Fe2O3. The Fe2O3 is the stable phase in which this oxide acts as a protective film or passive layer in this region. It would be expected to provide some protection against corrosion. Keywords: corrosion, artificial solution, geopolymer paste, reinforcement bar, open circuit potential, passivity

2021 ◽  
Vol 2 (108) ◽  
pp. 68-74
Author(s):  
M. Ali ◽  
J.H. Mohmmed ◽  
A.A. Zainulabdeen

Purpose: This work aimed at evaluating the properties of the ethyl silicate-based coating that can be applied on low carbon steel. Design/methodology/approach: Two mixture ratio types (2:1, and 3:2) of resin and hardener respectively were used to prepared two specimen models (A and B). Findings: It found that some mechanical properties (tensile, hardness, and impact strength) of ethyl silicate resin were evaluated according to standard criteria. Research limitations/implications: The effect of heat treatments at various temperatures (100, 150, and 200°C) and holding at different times (10, 20 & 30) min on hardness was investigated. Practical implications: Moreover, an open circuit potential corrosion test with a solution of 3.5% Sodium Chloride at room temperature and 60°C was used to determine the corrosion resistance of low carbon steel specimens coated with the two mixture types. Originality/value: The effects of mixture ratios (for resin and hardener) and heat treatment conditions on properties of ethyl silicate-based coating were studied. From obtained results, acceptable values of tensile, hardness, and toughness were recorded. Increasing heat treatment temperature and holding time leads to enhance hardness for both model types. An open circuit potential (OCP) tests show that there is an enhancement of protective properties of ethyl silicate coatings with mixture type B in comparison with type A was achieved. Generally, the results indicate that specimen model B has higher properties as compared with specimen model A.


CORROSION ◽  
10.5006/0709 ◽  
2013 ◽  
Vol 69 (6) ◽  
pp. 543-550 ◽  
Author(s):  
S. Jones ◽  
K. Coley ◽  
J. Kish

When exposed to concentrated sulfuric acid, stainless steel exhibits unique electrochemical behavior. This behavior can be observed as an oscillation in open-circuit potential between the active and passive states. The transient nature of the corrosion behavior under these conditions results in a distinct challenge for measuring and predicting corrosion rates. Using a series of commercial alloys with various nickel contents, this paper outlines the utilization of electrochemical experimentation to refine the prediction of corrosion rates. The paper also discusses some of the difficulties associated with many traditional electrochemical techniques such as potentiodynamic scans when used for characterizing systems that undergo oscillations in open-circuit potential.


2013 ◽  
Vol 67 (8) ◽  
Author(s):  
Pravin Deshpande ◽  
Sanket Vathare ◽  
Shashikant Vagge ◽  
Elena Tomšík ◽  
Jaroslav Stejskal

AbstractThe coaxial coating of multi-wall carbon nanotubes (MWCNT) with poly(aniline) (PANI) was synthesised and a paint was prepared containing conducting PANI-MWCNT composite. The corrosion protection performance was assessed by open circuit potential measurements, potentiodynamic polarisation, and electrochemical impedance spectroscopy. The corrosion rate of low-carbon steel coated with 1.5 mass % of PANI-MWCNT-based paint in 3.5 mass % sodium chloride solution was found to be 0.037 mm y−1, about 5.2 times lower than that of unpainted low-carbon steel and 3.6 times lower than that of epoxy painted steel.


2014 ◽  
Vol 805 ◽  
pp. 167-171 ◽  
Author(s):  
F.S. Silva ◽  
P.H. Suegama ◽  
W.P. Silva ◽  
A.W. Rinaldi ◽  
N.L.C. Domingues ◽  
...  

Schiff bases m-toluene N-Salicylideneaniline (m-TOL), (B) m-nitro-N- Salicylideneaniline (m-NTR) and (C) m-methoxy-N-salicylideneaniline (m-MTX) and cerium ions were studied added to 3.5 wt.% NaCl solution and added to the hybrid film based tetraethoxysilane (TEOS) e 3-methacryloxypropyltrimethoxysilane (MPTS). The polarization measurements showed lower current densities for the steel in NaCl with m-MTX, indicating that the m-MTX may be acting as an inhibitor. The hybrid films were doped with the m-MTX, Ce (III) or Ce (IV). Electrochemical measurements of open circuit potential (EOC), polarization curves and electrochemical impedance spectroscopy (EIS), were used to evaluate the corrosion behavior of the hybrid films. According Electrochemical Impedance measurements, all hybrid films, provided protection to the carbon steel. The films doped with Ce (IV), provided greater protection than the other, which indicates that this is the most suitable dopant for use in films.


2017 ◽  
Vol 64 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Xiaochao Xian ◽  
Chenglong Nai ◽  
Lixin Li ◽  
Shuo Zhao

Purpose Immersion is one of the key steps during the preparation of silane-based hybrid films, which has important effects on the performance of films after curing. In this paper, the formation process of Zr-doped silane film (i.e. the adsorption of silane and deposition of zirconium compounds) on carbon steel immersed in Zr(NO3)4/silane mixed solutions was investigated. Design/methodology/approach The method of in situ monitoring the open circuit potential of a two-electrode system, consisting of carbon steel and saturated calomel electrode, was used. The effects of immersion conditions (i.e. the concentration of Zr(NO3)4 and pH of Zr(NO3)4/silane mixed solution) on the open circuit potential were investigated in detail. Furthermore, the surface coverage rate of different cured films (i.e. Zr cured film, silane cured film and Zr/silane composite cured film) after curing on carbon steel was calculated according to the results of polarization curves. Electrochemical impedance spectroscopy (EIS) was used to study the self-healing property of Zr-doped silane cured film. Findings The results indicate that in Zr(NO3)4/silane mixed solutions, most zirconium compounds deposit on the surface of carbon steel at the initial immersing stage, then the adsorption of silane on the residual surface of carbon steel dominates the following immersing stage. EIS results show that the Zr-doped cured film has improved self-healing property. Originality/value First, the method of in situ monitoring the open-circuit potential of two-electrode system was applied to investigate the deposition of Zr and the adsorption of silane on carbon steel immersed in Zr(NO3)4/silane mixed solutions. Second, the formation process of Zr-doped silane film was proposed.


CORROSION ◽  
1969 ◽  
Vol 25 (11) ◽  
pp. 455-461 ◽  
Author(s):  
M. E. INDIG ◽  
C. GROOT

Abstract Current, potential, and weight losses were measured on a system consisting of a stainless steel working electrode, a platinum black reference electrode and platinum auxiliary electrode. The electrolyte was slightly alkaline lithiated water containing 3 ppm hydrogen at 288 C (550 F) and at saturation pressure. Linear polarization measurements were made in the region 0–20 millivolts from the open circuit potential. A corrosion current was calculated from these measurements, using previously cited Tafel constants. The cathodic Tafel constant was also measured directly. The cathodic Tafel slope agreed well with previous values. The corrosion current, estimated by linear extrapolation of the log current vs. voltage curve to zero applied current, agreed well with the current calculated from linear polarization. However, the descaled weight loss of the corroded electrode was only tenth of that computed from the current, time and Faraday's Law. The deviation from the expected corrosion behavior is explained by another anodic half reaction. The steady state exchange current is an equilibrium between several oxidation reactions and several reduction reactions. Only when the corrosion potential is sufficiently removed from the equilibrium potentials of the anodic and cathodic half reactions that constitute the corrosion reaction can the other competing reactions be ignored.


Author(s):  
Gina Genoveva ISTRATE ◽  
Alina Crina MUREȘAN

In this paper the corrosion behavior of different materials has been evaluated based on exposure in seawater. The laboratory immersion test technique has been applied to evaluate the effect of seawater on the corrosion behavior of different materials. In three sets of experiments, carbon steels (A681 Type O7), austenitic stainless steels (316L) and aluminium alloys (Al5083) were utilized. The specimens were fixed fully submerged in seawater. The corrosion process was evaluated using weight loss method, open-circuit potential measurements (OCP) and polarization techniques. To determine gravimetric index and the rate of penetration, samples were immersed in corrosive environment for 89 days and weighed periodically. The electrochemical experiments were conducted with a Potentiostat/Galvanostat (PGP 201) analyzer. It was connected to a PC. The Voltamaster software was used for electrochemical data analysis. A three-electrode cell composed of a specimen as a working electrode, Pt as counter electrode, and saturated calomel electrode (SCE) (Hg (l)/ Hg2Cl2 (s)) as a reference electrode were used for the tests. The weight loss tests revealed the lowest corrosion rate values for stainless steel and aluminium alloys, indicating a beneficial use for these materials in marine environments. The potentiodynamic method shows that the lowest corrosion rate in seawater (2.8 μm /year) was obtained for the Al5083 alloy, and the highest value of the corrosion rate (41.67 μm/year) for A681 carbon steel.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 169 ◽  
Author(s):  
Jia-Ning Xu ◽  
Wen-Ge Shi ◽  
Peng-Cheng Ma ◽  
Liang-Shan Lu ◽  
Gui-Min Chen ◽  
...  

In this paper, the galvanic effect of pyrite and arsenopyrite during the leaching pretreatment of gold ores was determined with the use of electrochemical testing (open circuit potential, linear sweep voltammetry, Tafel, and electrochemical impedance spectroscopy (EIS)) and frontier orbit calculations. The results show that (i) the linear sweep voltammetry curve and Tafel curve of the galvanic pair are similar to those of arsenopyrite, (ii) the corrosion behavior of the galvanic pair is consistent with that of arsenopyrite, and (iii) the galvanic effect promotes the corrosion of arsenopyrite by simultaneously increasing the cathode and anode currents and reducing oxidation resistance. The frontier orbit calculation explains the principle of the galvanic effect of pyrite and arsenopyrite from the view of quantum mechanics.


2020 ◽  
Author(s):  
Junhua Dong

<p>In the multi-barrier system of HLW repository, overpack is the first barrier to isolate high-level radioactive nuclides from biosphere, and Low carbon steel has been considered to be a promising candidate material for manufacturing the oberpack due to its good mechanical performance and workability and weldability. However, during thousands of years of geological disposal, the corrosion resistance of low carbon steel and its corrosion evolution behavior are the first element that must be fully understood, because it determines the life cycle of the artificial barrier.</p><p>Conventional studies had suggested that the corrosion of low carbon steel under the deep geological environment was driven by hydrogen evolution reaction (HER) based on that the dissolved oxygen was completely depleted during the long term disposal. However, the residual oxygen content is a critical factor to determine the corrosion mode of cathodic reduction reaction. Thermodynamics data indicated that the initial ferrous corrosion products formed in the deaerated bicarbonate solution can be chemically oxidized into ferric substance by the trace content of dissolved oxygen, and the accumulated FeOOH as a cathodic depolarizer significantly increased the open circuit potential and enhanced the corrosion rate of the low carbon steel. Moreover, chloride and sulfate in the simulated groundwater can reduce the increase of open circuit potential but it still promotes the corrosion of the low carbon steel. As the environments contained aggressive anions and high concentration of dissolved oxygen, low carbon steel was prone to suffer from the localized corrosion and the corrosion rate was obviously increased. By alloying with some contents of Ni and Cu, the corrosion rate of low alloy steel was decreased by an order of magnitude and it was less prone to suffer from the localized corrosion.</p><p>Under the conditions of simulated groundwater with different content of GMZ bentonite,the bentonite colloidal particle layer attached to the surface of low carbon steel showed blocking effect on resisting oxygen diffusion to the steel substrate, which consequently decrease the further oxidation of ferrous to ferric substances and the corrosion rate of low carbon steel. However, the barrier performance of bentonite colloids would be deteriorated due to their coagulation caused by the ferrous ions dissolved from the steel substrate. High content of bentonite was beneficial to maintain and to prolong the stabilization of the barrier system. An equivalent circuit model which correlates with the interfacial structure between electrode substrate and rust and bentonite layer was proposed. The fitting results showed a very good match between the model and experimental data, and the evolution of the results was also in agreement with real changes.</p>


2014 ◽  
Vol 896 ◽  
pp. 168-172 ◽  
Author(s):  
Djoko Hadi Prajitno ◽  
Dani Gustaman Syarief

Corrosion of carbon steel in nanofluid containing 0.1 gpl of ZrO2nanoparticle at temperature from 25 to 55°C was investigated by using potentiodynamic polarization techniques. The open circuit potential measurements, cathodic and anodic polarization were used to characterize the corrosion behavior of carbon steel. Metallurgical techniques such as optical microscopy and X-ray diffraction (XRD) were used to characterize the alloys before and after corrosion testing. The microstructures of the as received carbon steel exhibited equaxed morphology. While corrosion specimens showed that microstructure of carbon steel alloys relatively unchanged after polarization testing. X ray diffraction examination of carbon steel before polarization represent γ phase and after polarization is still γ phase with minor Fe2O3. The open circuit potentials of carbon steel increase to positive displacement with increasing temperature nanofluids. The results of polarization technique show that corrosion currents increase and therefore corrosion rates become faster with the increase of nanofluids temperature.


Sign in / Sign up

Export Citation Format

Share Document