Mechanical Properties of High Loading Luffa acutangula Fiber with Cloisite 15A and Polypropylene

2015 ◽  
Vol 1134 ◽  
pp. 178-184
Author(s):  
Siti Nurai'syah Umar Shaifudin ◽  
Dzaraini Kamarun ◽  
Nur Hikamah Seth ◽  
Engku Zaharah Engku Zawawi

Matured luffa fibers can be used as reinforcing fillers for polymers to produce industrial products. Frequently, these fibers are incorporated in thermoplastics and thermosets binders at low loadings (1 – 40) wt % of total composition. In this project, high loadings of luffa fiber (50 to 70 wt %) were incorporated with polypropylene (PP), coupling agent maleic anhydride grafted polypropylene (MAPP) and Cloisite 15A using extrusion for compounding. (C15A) at 5 wt % was added for reinforcement and to increase density of compounded materials for ease of processing during mixing. The compounded material was pelletized and the test pieces were prepared using compression moulding and shaped according to the standard. The effects of fiber loadings on the mechanical properties of the composites were determined.

2017 ◽  
Vol 25 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Jiuqiang Song ◽  
Yan Qin ◽  
Jia Chen ◽  
Siwen Qin

In this paper, a continuous glass fiber-reinforced polypropylene prepreg was prepared by fiber treatment with a silane coupling agent and MAH-g-PP resin. Continuous glass fiber-reinforced polypropylene sheets were made from prepreg and PP mats by hot-pressing; they displayed exceptional performance. This paper studies the effects of maleic anhydride grafting on the polypropylene crystallinity and MAH-g-PP content in the prepreg, and the mechanical properties of the composites. The results showed that modifying PP with maleic anhydride decreased the tacticity of the polypropylene molecular chain, which reduced the crystallinity and melting point. An excellent interface formed between the polypropylene and fiber after the glass fiber was treated with a silane coupling agent and MAH-g-PP resin. The mechanical properties of the polymer materials displayed more favorable properties as MAH-g-PP content increased; the ideal MAH-g-PP content was 50%.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2007
Author(s):  
Lety del Pilar Fajardo Cabrera de Lima ◽  
Cristian David Chamorro Rodríguez ◽  
José Herminsul Mina Hernandez

In obtaining wood polymer composites (WPCs), a weak interfacial bonding can cause problems during the processing and affect the mechanical properties of the resulting composites. A coupling agent (CA) is commonly used to solving this limitation. To improve the interfacial bonding between bamboo fiber (BF) and a polypropylene matrix, the effect of three organic acids on the mechanical properties and interfacial morphology were investigated. The BF/PP composites were prepared in five families: the first without CA, the second using a maleic anhydride-grafted polypropylene coupling agent, and the third, fourth, and fifth families with the addition of organic acids (OA) tricarboxylic acid (TRIA), hexadecanoic acid (HEXA), and dodecanoic acid (DODA), respectively. The use of OA in BF/PP improved the interfacial adhesion with the PP matrix, and it results in better mechanical performance than composites without CA. Composites coupled with MAPP, TRIA, DODA, and HEXA showed an increase in Young’s modulus of about 26%, 23%, 15%, and 16% respectively compared to the composite without CA incorporation. In tensile strength, the increase in composites with CA was about 190%, while in the flexural modulus, the coupled composites showed higher values, and the increase was more in composites with TRIA: about 46%. The improvement caused by tricarboxylic acid was similar to that promoted by the addition of maleic anhydride-grafted polypropylene (MAPP).


2012 ◽  
Vol 729 ◽  
pp. 216-221 ◽  
Author(s):  
Hajnalka Hargitai ◽  
Tamás Ibriksz ◽  
János Stifter ◽  
Endre Andersen

In our experiments polyamide 6/high density polyethylene blends (25/75 wt%) were produced and maleic anhydride grafted polyethylene was used as chemical coupling agent. To get finer microstructure and enhance the mechanical properties the blends were compounded by different nanostructured reinforcements. Two kinds of nanosilicate, the layered structure montmorillonite and the needle like sepiolite were applied in different concentrations and their effect on the mechanical and melting properties were examined.


2021 ◽  
Vol 36 (5) ◽  
pp. 545-556
Author(s):  
A. Hamza ◽  
R. K. Arya ◽  
A. D. Palsodkar ◽  
G. R. Bhadu ◽  
S. J. A. Rizvi

Abstract Isotactic polypropylene (iPP) was nucleated in-situ with calcium pimelate during melt compounding. Calcium pimelate is a highly effective β-nucleator for isotactic polypropylene (iPP). The β-nucleated iPP was characterized by wide angle x-ray diffraction (WAXD) and differential scanning calorimetry (DSC) for its crystallinity and crystal structure. In addition, the injection-molded samples were tested for thermo-mechanical properties. It is found that very low quantity (< 0.1 wt. %) of β-nucleator is required to produce sufficiently high β-crystal fraction (Kβ) in isotactic polypropylene. β-nucleated iPP shows increment of 11 to 14 °C in its heat deflection temperature (HDT). It was also observed that slow cooling rate of β-nucleated iPP promotes the formation of β-crystals and that tensile stretching leads to complete transformation of β crystals into a-crystals at room temperature. It was also revealed that the presence of maleic anhydride grafted polypropylene (PP-g-MA), a well-known coupling agent (or compatibilizer), may reduce the (Kβ) value to a marginal extent. It was also observed that the thermo-mechanical properties were not much affected by the presence of PP-g-MA. Therefore, calcium pimelate may be used as β-nucleator in case of neat as well as reinforced polypropylene containing maleic anhydride as coupling agent.


2013 ◽  
Vol 812 ◽  
pp. 187-191 ◽  
Author(s):  
Nur Izzati Zulkifli ◽  
Noorasikin Samat

Recycled polypropylene/microcrystalline cellulose (rPP/MCC) composites were prepared by adding different loadings of maleic anhydride grafted polypropylene (MAPP) coupling agent. The tensile, impact and morphological properties of the composites were investigated. The obtained results show that the tensile and impact strengths of the composites were significantly enhanced with the addition of MAPP loading from 2 to 5 wt%, as compared with unfilled rPP/MCC composites. However, it was found that at low filler content, different amounts of MAPP resulted in no appreciable change in the tensile strength and modulus. Moreover, dynamic mechanical analysis (DMA) results indicated that, increasing the amount of MAPP loading from 2 to 5 wt% in rPP/MCC provide better stiffness of the composite compared to those neat rPP and neat PP. Field emission scanning microscopy (FESEM) has shown that the composite, with MAPP loading, promotes better fibermatrix interaction.


2013 ◽  
Vol 812 ◽  
pp. 241-245 ◽  
Author(s):  
Fatimah A’thiyah Sabaruddin ◽  
Noorasikin Samat

Polymer nanocomposites containing polypropylene (PP) as the polymer matrix and nanofiller aluminium hydroxide (ATH) as the flame retardant filler were compounded with various loading of maleic anhydride grafted polypropylene, MAPP (0, 1, 2, 3, 5 wt %). All materials were mixed using melt mixing process and were further prepared using an injection moulding machine. The mechanical performances of the samples were characterized using tensile and impact tests. Improvements were observed for the tensile and impact properties of the PP/ATH samples after being loaded with MAPP. MAPP loading of 1 wt % was determined to be the optimum content of coupling agent addition as this loading enabled the best performance of the nanocomposite in tensile and impact tests. Different morphologies of the fracture surfaces for all samples were characterized using FESEM analysis.


2012 ◽  
Vol 576 ◽  
pp. 390-393 ◽  
Author(s):  
J. Awanis ◽  
S. Anis Sofia ◽  
Noorasikin Samat

This study shows the effect of using 3-aminopropyltriethoxysilane (APS) and maleic anhydride-grafted polypropylene (MAPP) as coupling agent on composite of RPP/MCC fiber. The compositions of MCC were varied from 0, 2, 4, 8 and 12 wt%. The compounded samples were prepared into test specimens by using injection moulding. The RPP/MCC composites with and without the coupling agent were characterized through mechanical testing of flexural and impact test. The incorporation of the modified MCC was found to increase the modulus and flexural strength. The flexural test indicates that the addition of 4 wt% MCC-APS and 8 wt% MCC-MAPP significantly increased the flexural strength of the RPP composite compared to the unmodified MCC. The impact test shows higher impact strength at 4 wt% of RPP/MCC-APS and 2 wt% of RPP/MCC-MAPP, respectively.


2020 ◽  
pp. 096739112094949
Author(s):  
Prakash Hadimani ◽  
HN Narasimha Murthy ◽  
Rajalakshmi Mudbidre

This paper deals with fabrication and characterization of unique polyphenylene ether/polystyrene/nylon-6/glass composites. Compounding of ternary blends with glass fibres was performed using twin screw co-rotating extruder. Test specimens were fabricated by compression moulding and injection moulding. Effect of maleic anhydride, fibre type (chopped and long), fibre content (30 wt. % and 40 wt. %) and fabrication method (compression moulding and injection moulding) on mechanical and thermal properties was studied. Maleic anhydride negatively influenced mechanical and thermal properties. Composites with 40 wt. % chopped fibres showed superior mechanical strength and those with 30 wt. % long fibres showed superior thermal properties, tensile and flexural moduli. Injection moulded specimens exhibited superior mechanical and thermal properties. The composites were studied for moisture content, density, melt flow index, glass transition temperature, thermal degradation temperature and mechanical properties. Interfacial strength was examined using scanning electron microscopy.


2021 ◽  
pp. 096739112110041
Author(s):  
Shakti Chauhan ◽  
N Raghu ◽  
Anand Raj

Polylactic acid (PLA) is blended with native starch or thermo plasticized starch (TPS) for preparing biodegradable composites. However, poor compatibility of PLA with starch results in the composites with inferior mechanical properties. This study examines the effect of Maleic Anhydride-Grafted-PLA (GMAPLA) coupling agent and its concentration on the extent of improvements in mechanical and thermal properties of PLA –TPS blends. Maleic anhydride was grafted on PLA in Haake torque rheometer, characterized and used as the coupling agent. PLA/TPS (wt/wt) blends (70/30 and 50/50) were prepared by twin screw extrusion. GMAPLA at three different levels 5%, 10% and 15% (wt%) with respect to PLA content was taken to study its effect on mechanical properties of blends. Presence of GMAPLA significantly improved the mechanical properties (tensile, flexural and impact strength) of TPS/PLA blends. Among the three concentrations, 10% GMAPLA in the blend was found to give the maximum improvement in strength properties. Dynamic mechanical analysis and thermo-gravimetric analysis indicated no significant effect of GMAPLA content on transition temperatures and thermal degradation behavior of the blends.


2013 ◽  
Vol 812 ◽  
pp. 87-92
Author(s):  
Daud Muhammad Fakhrurazi ◽  
Engku Zaharah Engku Zawawi ◽  
Dzaraini Kamarun

The value of Luffa acutangula, a species of the melon family, Curcubitaceae as food diminished as the fruit matured. They are then disposed as industrial or domestic waste material. However, the fibers of the matured fruits, also known as lignocelluloses fibers have high mechanical strength and can be used as reinforcing fillers for polymers. In this present study, treated and untreated fibers of Luffa acutangula were loaded as fillers for polypropylene (PP) at 1%, 3% and 5% loading. PP fiber composites loaded with alkali-treated fibers showed lower tensile and impact strength compared to PP fiber composites with untreated fibers. Thermal analysis of the fibers showed that alkali-treated fibers were deprived of the lignin content present in untreated fiber. This led to the lower mechanical properties of the alkali-treated luffa-filled PP composites as compared to its untreated counterpart. Increasing the fiber loading of the composites, increased the tensile and impact strength of untreated luffa-filled PP but decreased the tensile and impact strength of alkali-treated luffa-filled PP. This is in accordance to the removal of the lignin component upon alkali treatment which acts as a strengthening as well as energy absorption component of the fiber.


Sign in / Sign up

Export Citation Format

Share Document