Effectiveness Research of UASB Treatment Piggery Wastewater

2011 ◽  
Vol 183-185 ◽  
pp. 188-192
Author(s):  
Li Long Yan ◽  
Ying Zhang ◽  
Chuan Ju Li ◽  
Xue Han

In order to efficient treatment swine wastewater of chemical oxygen demand(COD) of high concentration, ammonium nitrogen (NH4+-N) of high concentration and high suspended solids (SS) , Up-flow Anaerobic Sludge Bed (UASB) were fed with piggery wastewater and investigated removal effect of COD, SS, NH4+-N, TP. The results showed that, UASB can effectively remove COD and SS in the pig farm wastewater. The corresponding removal rate was respectively 82.36% and 70%. UASB was poor on removal effect of NH4+-N and total phosphate (TP), due to the lack of anaerobic, anoxic environment. UASB is able to treatment COD and SS of piggery wastewater, but TN and TP removal efficiency need to further study.

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 83
Author(s):  
Yanlin Chen ◽  
Qianwen Sui ◽  
Dawei Yu ◽  
Libing Zheng ◽  
Meixue Chen ◽  
...  

A high concentration of suspended solids (SS) in swine wastewater reduces the efficiency of the biological treatment process. The current study developed a short-cut combined magnetic coagulation (MC)–sequence batch membrane bioreactor (SMBR) process to treat swine wastewater. Compared with the single SMBR process, the combined process successfully achieved similarly high removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4+-N), and total phosphorous (TP) of 96.0%, 97.6%, 99.0%, and 69.1%, respectively, at dosages of 0.5 g/L of poly aluminium chloride (PAC), 2 mg/L of polyacrylamide (PAM), and 1 g/L of magnetic seeds in Stage II, and concentrations of TN, COD, and NH4+-N in effluent can meet the discharge standards for pollutants for livestock and poultry breeding (GB18596-2001, China). The nitrogen removal loading (NRL) was increased from 0.21 to 0.28 kg/(m3·d), and the hydraulic retention time (HRT) was shortened from 5.0 days to 4.3 days. High-throughput sequencing analysis was carried out to investigate microbial community evolution, and the results showed that the relative abundance of ammonia-oxidizing bacteria (AOB) in the SMBR increased from 0.1% without pre-treatment to 1.78% with the pre-treatment of MC.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1803 ◽  
Author(s):  
Yuko Goto ◽  
Naoko Yoshida

Conventional aerobic treatment of swine wastewater, which generally contains 4500–8200 mg L−1 of organic matter, is energy-consuming. The aim of this study was to assess the application of scaled-up microbial fuel cells (MFCs) with different capacities (i.e., 1.5 L, 12 L, and 100 L) for removing organic matter from swine wastewater. The MFCs were single-chambered, consisting of an anode of microbially reduced graphene oxide (rGO) and an air-cathode of platinum-coated carbon cloth. The MFCs were polarized via an external resistance of 3–10 Ω for 40 days for the 1.5 L-MFC and 120 days for the 12L- and 100 L-MFC. The MFCs were operated in continuous flow mode (hydraulic retention time: 3–5 days). The 100 L-MFC achieved an average chemical oxygen demand (COD) removal efficiency of 52%, which corresponded to a COD removal rate of 530 mg L−1 d−1. Moreover, the 100 L-MFC showed an average and maximum electricity generation of 0.6 and 2.2 Wh m−3, respectively. Our findings suggest that MFCs can effectively be used for swine wastewater treatment coupled with the simultaneous generation of electricity.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2610 ◽  
Author(s):  
Jung-Chieh Su ◽  
Szu-Ching Tang ◽  
Po-Jui Su ◽  
Jung-Jeng Su

The pattern of micro-electricity production of simple two-chamber microbial fuel cells (MFC) was monitored in this study. Piggery wastewater and anaerobic sludge served as fuel and inocula for the MFC, respectively. The output power, including voltage and current generation, of triplicate MFCs was measured using an on-line monitoring system. The maximum voltage obtained among the triplicates was 0.663 V. We also found that removal efficiency of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) in the piggery wastewater was 94.99 and 98.63%, respectively. Moreover, analytical results of Fast Fourier Transform (FFT) demonstrated that the output current comprised alternating current (AC) and direct current (DC) components, ranging from mA to μA.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1100 ◽  
Author(s):  
Ya-Wen Wang ◽  
Hua Li ◽  
You Wu ◽  
Yun Cai ◽  
Hai-Liang Song ◽  
...  

Rural runoff with abundant nutrients has become a great threat to aquatic environment. Hence, more and more attention has been focused on nutrients removal. In this study, an improved aerobic/anaerobic/aerobic three-stage water spinach constructed wetland (O-A-O-CW) was used to improve the removal of nitrogen and phosphorus of rural runoff. The removal rate of the target pollutants in O-A-O-CW was compared with the common matrix flow wetland as well as the no-plant wetland. The results showed that the O-A-O-CW significantly increased the chemical oxygen demand, total phosphorus, ammonium-nitrogen, nitrate, and total nitrogen removal rate, and the corresponding removal rate was 55.85%, 81.70%, 76.64%, 89.78%, and 67.68%, respectively. Moreover, the best hydraulic condition of the wetland, including hydraulic retention time and hydraulic loading, was determined, which were 2 days and 0.45 m3·m−2·day−1, respectively. Furthermore, the removal mechanism of the constructed wetland was thoroughly studied, which included the adsorption of nitrogen and phosphorus by the matrix and water spinach, and the nitrification and denitrification by the bacteria. The results demonstrated that the mechanisms of nitrogen removal in the new type wetland were principally by the nitrification and denitrification process. Additionally, adsorption and precipitation by the matrix are mainly responsible for phosphorus removal. These results suggested that the new O-A-O-CW can efficiently removal nutrients and enhance the water quality of the rural runoff.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2231 ◽  
Author(s):  
Hongjun Ni ◽  
Kaixuan Wang ◽  
Shuaishuai Lv ◽  
Xingxing Wang ◽  
Lu Zhuo ◽  
...  

The variation of substrate concentration in anode chamber directly affects the power generation efficiency and decontamination performance of microbial fuel cell (MFC). In this study, three concentrations of swine wastewater with 800 mg/L, 1600 mg/L and 2500 mg/L were selected as substrates, and the performance of MFC and response characteristics of anode microbial community were investigated. The results show that the concentration of a selected substrate is positively correlated with the output voltage of MFC and chemical oxygen demand (COD) removal rate. The microbial community diversity in the anode chamber and the performance of battery can be significantly affected when concentration changes in different ways, which helps to selectively cultivate the adaptable dominant bacteria to enhance the stability and decontamination performance of MFC. The community structure of anodic biofilm is mainly composed of Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Spirochaetae. These findings are meaningful to improve the treatment effects of swine wastewater and can help to find out the mechanism of varying concentration that influences the production of microorganisms in MFC.


2014 ◽  
Vol 522-524 ◽  
pp. 854-860
Author(s):  
Qing Tao Zhang ◽  
Zhi Jian Zhang ◽  
Jiong Ma ◽  
Jiao Xiang

The growth performance of duckweed (Spirodela polyrrhiza) and its removal rate of nitrate and phosphorus in sewages taken from sewage treatment plant with different processes were studied. The experiments were conducted in an environmentally controlled growth chamber. Three kinds of sewages were taken from a grit chamber, a sedimentation tank, and the anoxic pond in a sewage treatment plant, respectively. The fourth kind of sewage was mixed using the sedimentation tank sewage and the anoxic pond sewage in a volumetric ratio 1:1. The weight of duckweed biomass were determined with a balance. Wastewater samples taken from the media were analyzed for total nitrogen (TN), ammonium nitrogen (NH4N), total phosphorus (TP), phosphatephosphorus (PO4P) using AA3 Continous Flow Analyzer. The results showed that Spirodela polyrrhiza grew well in sewages taken from grit chamber and sedimentation tank of a sewage treatment plant, whereas a lot of duckweed fronds were dead in the sewage taken from the anoxic pond due to the high TP (higher than 7.9 mg/L) and TN (higher than 51.6 mg/L). The suitable TN concentration for Spirodela polyrrhiza growth should not be higher than 45 mg/L. Compared with the treatments without duckweed, the NH4N concentrations were reduced more than 60% in ST and GC sewages with duckweed due to the NH4N uptake by duckweed. Spirodela polyrrhiza could remove TN efficiently in sewages with relative low concentration TN (less than 20 mg/L), while duckweed could not remove TN effectively in sewages with high concentration TN (higher than 20 mg/L). The TN concentration in GC sewage decreased greatly in the first four days, which probably brought about anaerobic condition, thus P uptake switched to net release of P, which caused the increase of the TP concentration in the GC sewage without duckweed in the last six days. O2 or oxidant should be provided for sewage treatment system using duckweed to ensure that efficient removal of TN and TP meanwhile. The TP and PO4P concentrations in the mixed sewage with duckweed increased far more than those for no-duckweed treatments, which could be related that the dead duckweed released P into the sewage.


2009 ◽  
Vol 60 (8) ◽  
pp. 2145-2152 ◽  
Author(s):  
C. González ◽  
P. A. García ◽  
R. Muñoz

Piggery wastewater is characterized by its high content in nitrogen and phosphorus, as well as by a low C/N ratio. This type of wastewater is traditionally spread to croplands (with its subsequent leaching to groundwater) or rarely discharged into natural water bodies, which ultimately cause severe episodes of eutrophication in aquatic ecosystems. In this context, activated sludge systems constitute a robust and efficient treatment option. The performance of an activated sludge process using a pre-denitrification configuration treating both sieved and flocculated swine slurry at a hydraulic retention time (HRT) of 7.7 days was evaluated. In order to avoid bacterial wash-out, sludge from the settler was recirculated to the anoxic tank to accomplish denitrification. Once the biomass was acclimatized, the reactor was fed with swine slurry containing 19, 2.6, and 0.27 g/L of total chemical oxygen demand (COD), total Kjeldhal nitrogen (TKN), and soluble P, respectively. Nitrogen removal showed a clear dependency on the influent composition. When the influent TKN/total COD and soluble COD/total COD ratios were respectively 0.12–0.15 and 0.7, the reactor exhibited good removal efficiencies (up to 99 and 91 for N-NH4+, TKN, respectively) while PO43− was removed up to 65%. However, when the influent TKN/total COD ratio rose to 0.26 and soluble COD/total COD decreased to 0.3, the denitrification process was severly hindered concomitant with and accumulation of nitrite. Nevertheless, organic matter degradation was not affected by influent composition. At the last stage of the experiment, removals of dissolved phosphorus fell to 40% when the redox potential (ORP) profile showed a constant value of −400 mV, likely due to phosphate released from bacterial slugde.


Author(s):  
Itzel Romero-Soto ◽  
Celestino Garcia-Gomez ◽  
Luis Leyva-Soto ◽  
Juan Napoles-Armenta ◽  
María Concha-Guzman ◽  
...  

Abstract The application and design of treatment systems in wastewater are necessary due to antibiotics' potential toxicity and resistant genes on residual effluent. This work evaluated a coupled bio-electrochemical system to reduce chloramphenicol (CAP) and chemical oxygen demand (COD) on swine wastewater (SWW). SWW characterization found CAP of <10 μg/L and 17,434 mg/L of COD. The coupled system consisted of preliminary use of an Up-flow Anaerobic Sludge Blanket Reactor (UASB) followed by electrooxidation (EO). UASB reactor (primary stage) was operated for three months at an organic load of 8.76 kg of COD/m3d and 50 mg CAP/L as initial concentration. In EO, we carried out a 22 (time operation and intensity) factorial design with a central composite design; we tried two Ti cathodes and one anode of Ti/PbO2. Optimal conditions obtained in the EO process were 240 min of operation time and 1.51 A of current intensity. It was possible to eliminate 44% of COD and 64.2% of CAP in the preliminary stage. On bio-electrochemical, a total COD and CAP removal were 82.35% and >99.99%, respectively. This coupled system can be applied to eliminate antibiotics and other organic pollutants in agricultural, industrial, municipal, and other wastewaters.


Author(s):  
Linhe Sun ◽  
Huijun Zhao ◽  
Jixiang Liu ◽  
Bei Li ◽  
Yajun Chang ◽  
...  

The rapid growth of the livestock and poultry industries has resulted in the production of a large amount of wastewater, and the treatment of this wastewater requires sustainable and environmentally friendly approaches such as phytoremediation. A substrate-free floating wetland planted with water dropwort (Oenanthe javanica), a common vegetable in Southeast China, was constructed to purify a lagoon with anaerobically and aerobically treated swine wastewater in Suqian, China. The average removal rates of total nitrogen, ammonium nitrogen, nitrite nitrogen, and chemical oxygen demand were 79.96%, 95.04%, 86.14%, and 59.91%, respectively, after 40 days of treatment. A total of 98.18 g∙m−2 nitrogen and 19.84 g∙m−2 phosphorus were absorbed into plants per harvest through the rapid growth of water dropwort biomass, and the nitrogen accumulation ability was similar to that observed of other plants, such as water hyacinth. In addition, the edible part of water dropwort was shown to comply with the Chinese National Food Sanitation Standards and be safe for human consumption. Its low soluble sugar content also makes it a suitable addition to the daily diet. Overall, substrate-free floating constructed wetlands planted with water dropwort could be more widely used for livestock wastewater purification and could be integrated with plant–livestock production in China because of its high removal efficiency and recycling utilization of water dropwort biomass.


2017 ◽  
Vol 18 (2) ◽  
pp. 71-78
Author(s):  
Ibrahim Adebayo Bello

Effluents from dye and textile industries are highly contaminated and toxic to the environment. High concentration of non-biodegradable compounds contributes to increased biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of the wastewater bodies.  Dyes found in wastewater from textile industries are carcinogenic, mutagenic or teratogenic. Biological processes involving certain bacteria, fungi, activated carbon and carbon nanotubes (CNTs) are promising methods for treating the waste water. These methods are either inefficient or ineffective.  These complexities necessitates search for new approaches that will offset all the shortcomings of the present solutions to the challenges faced with textile wastewater management. This article reviews the past and recent methods used in the treatment of the textile dye wastewater and the future opportunities for efficient treatment of textiles wastewaters.


Sign in / Sign up

Export Citation Format

Share Document