Low-Temperature Joining Technique as Interconnection Technology for Power Electronics

2011 ◽  
Vol 324 ◽  
pp. 437-440
Author(s):  
Raed Amro

There is a demand for higher junction temperatures in power devices, but the existing packaging technology is limiting the power cycling capability if the junction temperature is increased. Limiting factors are solder interconnections and bond wires. With Replacing the chip-substrate soldering by low temperature joining technique, the power cycling capability of power modules can be increased widely. Replacing also the bond wires and using a double-sided low temperature joining technique, a further significant increase in the life-time of power devices is achieved.

2016 ◽  
Vol 858 ◽  
pp. 1043-1048 ◽  
Author(s):  
Karl Otto Dohnke ◽  
Karsten Guth ◽  
Nicolas Heuck

Packaging plays an important role to allow the full potential of silicon carbide devices to be realised. The physical properties of silicon carbide will allow devices to operate with junction temperatures well above 200 °C, but today standard-packaged SiC products are limited to a maximum junction temperature of 175 °C. The limitation lies in the packaging, because a power device package is a complex structure consisting of many components of different materials and with correspondingly different thermal properties. As such, the assembly technologies define both the performance and lifetime of discrete packages and power modules. In this paper we give an insight of packaging technology for SiC devices from the beginning in the mid-1980s through to the state-of-the-art of today. In addition, new packaging technologies to enable power SiC devices to operate up to 200 °C are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zoubir Khatir ◽  
Son-Ha Tran ◽  
Ali Ibrahim ◽  
Richard Lallemand ◽  
Nicolas Degrenne

AbstractExperimental investigations on the effects of load sequence on degradations of bond-wire contacts of Insulated Gate Bipolar Transistors power modules are reported in this paper. Both the junction temperature swing ($$\Delta T_{j}$$ Δ T j ) and the heating duration ($$t_{ON}$$ t ON ) are investigated. First, power cycling tests with single conditions (in $$\Delta T_{j}$$ Δ T j and $$t_{ON}$$ t ON ), are performed in order to serve as test references. Then, combined power cycling tests with two-level stress conditions have been done sequentially. These tests are carried-out in the two sequences: low stress/high stress (LH) and high stress/low stress (HL) for both $$\Delta T_{j}$$ Δ T j and $$t_{ON}$$ t ON . The tests conducted show that a sequencing in $$\Delta T_{j}$$ Δ T j regardless of the direction “high-low” or “low–high” leads to an acceleration of degradations and so, to shorter lifetimes. This is more pronounced when the difference between the stress levels is large. With regard to the heating duration ($$t_{ON}$$ t ON ), the effect seems insignificant. However, it is necessary to confirm the effect of this last parameter by additional tests.


2012 ◽  
Vol 717-720 ◽  
pp. 1233-1236 ◽  
Author(s):  
Kohei Matsui ◽  
Yusuke Zushi ◽  
Yoshinori Murakami ◽  
Satoshi Tanimoto ◽  
Shinji Sato

We have developed a small-volume, high-power-output inverter with a high output power density using SiC power devices. To fully utilize the advantages of SiC power devices, it is necessary to reduce the inductance of the power module. This is done by using a double-layer ceramic substrate, attaining a low inductance of 5 nH. A double pulse test was carried out up to 60 A under a DC voltage of 600 V. The low inductance greatly reduced the surge voltage and the oscillation at the switching transient. The SiC inverter with a volume of 250 cc was assembled using three of the power modules. The cooling performance of the inverter was evaluated at a loss equivalent to an output power of 10 kW, and it was found that the inverter can output 10 kW at a junction temperature (Tj) of about 200°C.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000906-000937 ◽  
Author(s):  
Lars Boettcher ◽  
Lars Boettcher ◽  
S. Karaszkiewicz ◽  
D. Manessis ◽  
A. Ostmann

Power electronics packaging applications has strong demands regarding reliability and cost. The fields of developments reach from low power converter modules, over single or multichip MOSFET or IGBT packages, up to high power applications, like needed e.g. for solar inverters and automotive applications. This paper will give an overview about these applications and a description of each ones demand. The spectrum of conventional power electronics packaging reaches from SMD packages for power chips to large power modules. In most of these packages the power semiconductors are connected by bond wires, resulting in large resistances and parasitic inductance. Additionally bond wires result in a high stray inductance which limits the switching frequency. The embedding of chips using Printed Circuit Board (PCB) technology offers a solution for many of the problems in power packaging. This paper will show today's available power packages and power modules, realized in industrial production as well as in European research projects. All technologies which are used are based on PCB materials and processes. Chips are mounted to Cu foils, lead frames, high power PCBs or even ceramic substrates, embedded by vacuum lamination of laminate sheets and electrically connected by laser drilling and Cu plating. A new approach for embedded power modules will be presented in detail. In this project, different application fields are covered, ranging from 50 W over 500 W to 50kW power modules for different applications like single chip packages, over power control units for pedelec (Pedal Electric Cycle), to inverter modules for automotive applications. This approach will focus on a power core base structure for the embedded semiconductor, which is then connected to a high power PCB. The connection to the embedded die is realized by direct copper connection only. The technology principle will be described in detail. Frist manufactured demonstrators will be presented. The presented new approach for the realization of a power core structure offers new possibilities for the module manufacturing, avoiding soldering or Ag sintering of the power semiconductors and the handling of thick copper substrates during the embedding process.


2016 ◽  
Vol 13 (4) ◽  
pp. 169-175
Author(s):  
Sayan Seal ◽  
Michael D. Glover ◽  
H. Alan Mantooth

This article presents the plan and initial feasibility studies for an Integrated Wire Bond-less Power Module. Contemporary power modules are moving toward unprecedented levels of power density. The ball has been set rolling by a drastic reduction in the size of bare die power devices owing to the advent of wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride. SiC has capabilities of operating at much higher temperatures and faster switching speeds compared with its silicon counterparts, while being a fraction of their size. However, electronic packaging technology has not kept pace with these developments. High-performance packaging technologies do exist in isolation, but there has been limited success in integrating these disparate efforts into a single high-performance package of sufficient reliability. This article lays the foundation for an electronic package designed to completely leverage the benefits of SiC semiconductor technology, with a focus on high reliability and fast switching capability. The interconnections between the gate drive circuitry and the power devices were implemented using a low temperature cofired ceramic interposer.


2013 ◽  
Vol 740-742 ◽  
pp. 869-872 ◽  
Author(s):  
Peter Friedrichs ◽  
Reinhold Bayerer

Silicon carbide power devices are intended and to enter new application regimes in power electronics, in fact, they are enabling components mainly if higher switching frequencies in power electronics are considered. This trend can be clearly observed since power density can be increased and efforts towards passive components and other mechanical contributions to the system can be reduced. However, this trend imposes new challenges towards the surrounding of the chips in form of the package itself and the whole system around. Stray components like inductances and impedance elements become crucial elements in the whole circuit what results in the fact that a simple exchange of silicon chips by silicon carbide in a given package can be ruled out. In addition different considerations regarding the thermal design especially in power modules arise when SiC chips are considered, triggered by the fact that the cost balance between assembly and chip is shifted compared to silicon based solutions. Thus, different optimization criteria can be used, leading to new design approaches for power modules. The following paper will give a first inside how those boundary conditions can be implemented in innovative solutions using SiC components.


Author(s):  
Klas Brinkfeldt ◽  
Göran Wetter ◽  
Andreas Lövberg ◽  
Dag Andersson ◽  
Zsolt Toth-Pal ◽  
...  

As the automotive industry shifts towards the electrification of drive trains, the efficiency of power electronics becomes more important. The use of silicon carbide (SiC) devices in power electronics has shown several benefits in efficiency, blocking voltage and high temperature operation. In addition, the ability of SiC to operate at higher frequencies due to lower switching losses can result in reduced weight and volume of the system, which also are important factors in vehicles. However, the reliability of packaged SiC devices is not yet fully assessed. Previous work has predicted that the different material properties of SiC compared to Si could have a large influence on the failure mechanisms and reliability. For example, the much higher elastic modulus of SiC compared to Si could increase strain on neighboring materials during power cycling. In this work, the failure mechanisms of packaged Si- and SiC-based power devices have been investigated following power cycling tests. The packaged devices were actively cycled in 4.5 s heating and 20 s cooling at ΔT = 60–80 K. A failure analysis using micro-focus X-ray and scanning acoustic microscopy (SAM) was carried out in order to determine the most important failure mechanisms. The results of the analysis indicate that the dominant failure mechanism is wire bond lift-off at the device chip for all of the SiC-based devices. Further analysis is required to determine the exact failure mechanisms of the analyzed Si-based devices. In addition, the SiC-based devices failed before the Si-based devices, which could be a result of the different properties of the SiC material.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 406 ◽  
Author(s):  
Xiaorui Guo ◽  
Qian Xun ◽  
Zuxin Li ◽  
Shuxin Du

The significant advance of power electronics in today’s market is calling for high-performance power conversion systems and MEMS devices that can operate reliably in harsh environments, such as high working temperature. Silicon-carbide (SiC) power electronic devices are featured by the high junction temperature, low power losses, and excellent thermal stability, and thus are attractive to converters and MEMS devices applied in a high-temperature environment. This paper conducts an overview of high-temperature power electronics, with a focus on high-temperature converters and MEMS devices. The critical components, namely SiC power devices and modules, gate drives, and passive components, are introduced and comparatively analyzed regarding composition material, physical structure, and packaging technology. Then, the research and development directions of SiC-based high-temperature converters in the fields of motor drives, rectifier units, DC–DC converters are discussed, as well as MEMS devices. Finally, the existing technical challenges facing high-temperature power electronics are identified, including gate drives, current measurement, parameters matching between each component, and packaging technology.


Author(s):  
R. E. Watts ◽  
K. Fedje ◽  
E. R. Brown ◽  
M. C. Shaw

The coupled effects of mechanical stress and thermal expansion on the electrical function of power electronic circuits are explored within a new analytical framework called thermomechatronics. The problem of interest is the progressive performance degradation of the power electronics owing to the growth of thermomechanically induced fatigue cracks within the die-attach interlayer between power devices and substrates. Building on previous efforts, the present analysis focuses on experimentally confirming the system-level degradation of a simple power electronics circuit subject to variations in junction temperature of the electronics that would result from variations in interlayer damage.


Sign in / Sign up

Export Citation Format

Share Document