Research on the Quality of Screen Printing Based on the UV Ink

2011 ◽  
Vol 380 ◽  
pp. 121-124 ◽  
Author(s):  
Gai Mei Zhang ◽  
Pu Jun Deng ◽  
Wen Cai Xu ◽  
Zhi Qiang Yu

With the development of the green inks, UV ink has been applicated wider and wider in the printing, packaging and the electronics industry. Based on the UV inks and screen printing process, this paper has investigated the influnce of mesh count, screen ruling, printing materials and ink viscosity on print quality by measuring the printing dot gain experimentally. The results show that the higher mesh count and more smooth printing material can induce the better dot, tone reproduction and higher printing precision. The more serious dot gain and the worse tone reproduction will induced by lower ink viscosity. The higher screen ruling cause the bigger dot gain value. Bigger rate of mesh count with screening ruling can reduce the moire phenomena.

2018 ◽  
Vol 2018 (1) ◽  
pp. 000665-000671
Author(s):  
Jianbiao Pan ◽  
Malcolm Keif ◽  
Joshua Ledgerwood ◽  
Xiaoying Rong ◽  
Xuan Wang

Abstract The lightweight and bendable features of printed flexible electronics are increasingly attractive. Currently stretchable silver inks are formulated for wide traces, typically larger than 2 mm. To attach ultra-thin silicon chips that have fine pitch onto printed organic substrate, it is necessary to print fine trace width/space that matches the pitch of the chips, which may be less than 200 microns. This paper presents the development and optimization of the screen printing process for printing stretchable silver ink onto stretchable thermoplastic polyurethane (TPU) substrate. A test vehicle was designed including 50 μm/5 mm (line width/line length) to 350 μm/35 mm lines (at 4 biases). The stretchable ink selected was DuPont PE 873 and Dupont's PE 5025 ink (non-stretchable conductive flake silver) was used as a “control” to baseline the printing process. The substrate used was Bemis TPU ST604. The experiment was done on a DEK Horizon 03i printer. A DEK squeegee 200 (Blue) and a DEK 265 flood bar (200 mm) were used. A 2-level factorial design with three replicates was selected to investigate the effect of process parameters on the quality of prints. The quality of the prints is characterized by 1) resistance of traces, 2) sheet resistance, 3) z-axis height, and 4) trace width/spacing. We observed significant noise in the z-axis printed silver ink height measured by profilometry and concluded z-axis height is not a good response variable for characterizing screen printing stretchable silver ink onto TPU substrate, mainly due to high roughness of the TPU substrate. We proposed calculated sheet resistance based on the measured resistance value, trace width, and trace length, which can replace trace height measurements on rough profile substrates. We found that squeegee pressure and emulsion thickness have statistically significant effects on calculated sheet resistance of print traces while print speed does not have statistically significant effects. In our experiment setting levels, the lower the squeegee pressure, the lower the calculated sheet resistance that is achieved. The emulsion with higher emulsion over mesh (EOM) is better than the emulsion with lower EOM since it can achieve lower sheet resistance. After optimizing the screen printing process, we were able to print 100 μm (4 mils) trace width and spacing with high consistency.


2018 ◽  
Vol 178 ◽  
pp. 03015
Author(s):  
Viorica Cazac ◽  
Jana Cîrja ◽  
Emilia Balan ◽  
Cristina Mohora

This paper presents the study results regarding the analysis of the screen printing quality on different types of materials. The quality of the screen printing is determined by several particularities of the screen printing process such as: the type of mesh, screen ruling, ink viscosity, raster spacing, etc. The material which is supposed to be printed is as important as the particularities of the screen printing process itself. The composition, structure and features of the printed items as well as the composition, viscosity and other ink properties, all together determine the quality of the screen printed matter.


2012 ◽  
Vol 262 ◽  
pp. 340-344 ◽  
Author(s):  
Chang Lang Chen ◽  
Mei Chun Lo ◽  
Yun Ti Su ◽  
Yu Tung Chang

The In-Mold Roller is a revolutionary printing process by which objects are 3D decorated. The products decorated by In-Mold Roller are protected from water and fading. These kinds of decorations strongly increase the beauty, desirability and value of the objects. The In-Mold Roller is now using either of gravure printing and screen printing to print PET film. However, there are some problems with these two techniques. This research is to investigate the potential use of combining In-Mold Roller with digital inkjet printing in 3D decoration, e.g. in personalized printing services. The study results found show that digital inkjet printing to the PET film and then transfer to the ABS, the solid ink densities (SIDs) of primaries would increase. The tone values increases (TVIs) from highlight and middle (around 0~60%) were generally higher than those in shadows. The shapes and sizes of color gamut were also varied according to different kinds of digital UV inkjet printing processes. Moreover, after transferred, the color gamut became smaller.


2010 ◽  
Vol 174 ◽  
pp. 255-258
Author(s):  
Wen Yan Jiang ◽  
Zhi Hong Wang

By experimental method, the optimum parameters for offset ink were investigated under standard printing conditions. Firstly, the relationship between solid ink density and print contrast was established, and the optimum values of solid ink densities and print contrasts were calculated. Then, perfect tone reproduction was achieved by dot gain compensation, in which the calibration curves were obtained by the target curves and the initial tone value increase(TVI) curves based on optimum SIDs. The results showed that this method of determining the optimum parameters for offset inks were practicable and reliable, it can be used to research the printability of inks and papers, optimize printing process, improve printing quality, and provide method of standardization of process control for printing institutions.


1997 ◽  
Vol 80 (5) ◽  
pp. 222-229
Author(s):  
T C Claypole ◽  
D T Gethin ◽  
J Danias

2020 ◽  
Vol 1005 ◽  
pp. 123-130
Author(s):  
Jantip Setthayanond ◽  
Phussadee Lim

In this study, a combined aroma finishing and pigment printing process was investigated in order to develop 1-step, all-in aroma finishing/pigment printing process for Thai silk. Lemongrass oil microcapsules, an aroma finishing agent, was applied on silk by screen printing process and the properties of the printed fabrics were examined. Pigment printing was also performed individually by screen printing and the colorimetric properties of the print were measured. Binder content affected the print properties of both aroma microcapsules and pigment on silk. An appropriate binder content was chosen at 20 g/100 g print paste. The 1-step, all-in aroma finishing/pigment printing process was performed by printing both lemongrass oil microcapsules and pigment simultaneously on silk fabrics. The process efficiency was determined in two different aspects i.e. aroma finishing effect and coloring effect. Aroma finishing effect of the 1-step, all-in process was examined in comparison with the individual microcapsule print results while the coloring effect was compared between the printed fabric from 1-step, all-in process and the individual pigment printing. The results showed that the 1-step, all-in process could provide comparable aroma finishing effect and pigment print quality to the separated finishing and pigment printing processes.


2012 ◽  
Vol 429 ◽  
pp. 116-120 ◽  
Author(s):  
De Yu Chen ◽  
Yue Qin Hang ◽  
Xiao Cheng Su ◽  
Xue Fang Zhu

The digital image processing and recognition technology is applied to the detection of the print quality of screen printing, which is designed to implement the application system of some functions in screen printing, such as the acquisition of multiple printing images, the feature extraction and the matching to the quality control processing. In the RG Chromaticity space, the template matching method is used to design the relevant algorithms and realize fast real-time detection of some problems related to the image dislocation, leakage India, infiltration excess and uneven quality color. Having been tested and run, the method appears good quality monitoring results and economic benefits.


2021 ◽  
Vol 34 (1) ◽  
pp. 24-31
Author(s):  
James Feng ◽  
Anthony Loveland ◽  
Michael Renn

To improve performance and reduce size of printed-circuit board (PCB) in electronics industry, embedding discrete components within a board substrate has been an effective approach by reducing solder joints and their associated impedance mismatching, inductive reactance, etc.  With its unique capabilities for non-contact precision material deposition, the Aerosol Jet® direct-write technology has been enabling additive manufacturing of fine-feature electronics conformally onto flexible substrates of complicated shapes.  The CAD/CAM controlled relative motions between substrate and print head allows convenient adjustment of the pattern and pile height of deposited material at a given ink volumetric deposition rate.  To date in the printed electronics industry, additively printing embedded polymer-thick-film (PTF) resistors has mostly been done with screen printing using carbon-based paste inks.  Here we demonstrate results of Aerosol Jet® printed PTF resistors of resistance values ranging from ~50 W to > 1 kW, adjustable (among several variable parameters) by the number of stacked layers (or print passes with each pass depositing a fixed amount of ink) between contact pads of around 1 mm apart with footprint line typically < 0.3 mm. In principle, any ink material that can be atomized into fine droplets of 1 to 5 microns can be printed with the Aerosol Jet® system.  However, the print quality such as line edge cleanliness can significantly influenced by ink rheology which involves solvent volatility, solids loading, and so on.  Our atomizable carbon ink was made by simply diluting a screen printing paste with a compatible solvent of reasonable volatility, which can be cured at temperatures below 200 oC. We show that Aerosol Jet® printed overlapping lines can be stacked to large pile height (to reduce the resistance value) without significant increase of line width, which enables fabricating embedded resistors with adjustable resistance values in a limited footprint space.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20550-20556
Author(s):  
Isao Shitanda ◽  
Kanako Oda ◽  
Noya Loew ◽  
Hikari Watanabe ◽  
Masayuki Itagaki ◽  
...  

Bio-composite inks based on magnesium oxide (MgO)-templated mesoporous carbon (MgOC) and chitosan cross-linked with genipin for one-step screen-printing process.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2139
Author(s):  
Wei Shian Tey ◽  
Chao Cai ◽  
Kun Zhou

Multi Jet Fusion (MJF) is a recently developed polymeric powder bed fusion (PBF) additive manufacturing technique that has received considerable attention in the industrial and scientific community due to its ability to fabricate functional and complex polymeric parts efficiently. In this work, a systematic characterization of the physicochemical properties of MJF-certified polyamide 11 (PA11) and thermoplastic polyurethane (TPU) powder was conducted. The mechanical performance and print quality of the specimens printed using both powders were then evaluated. Both PA11 and TPU powders showed irregular morphology with sharp features and had broad particle size distribution, but such features did not impair their printability significantly. According to the DSC scans, the PA11 specimen exhibited two endothermic peaks, while the TPU specimen exhibited a broad endothermic peak (116–150 °C). The PA11 specimens possessed the highest tensile strength in the Z orientation, as opposed to the TPU specimens which possessed the lowest tensile strength along the same orientation. The flexural properties of the PA11 and TPU specimens displayed a similar anisotropy where the flexural strength was highest in the Z orientation and lowest in the X orientation. The porosity values of both the PA11 and the TPU specimens were observed to be the lowest in the Z orientation and highest in the X orientation, which was the opposite of the trend observed for the flexural strength of the specimens. The PA11 specimen possessed a low coefficient of friction (COF) of 0.13 and wear rate of 8.68 × 10−5 mm3/Nm as compared to the TPU specimen, which had a COF of 0.55 and wear rate of 0.012 mm3/Nm. The PA11 specimens generally had lower roughness values on their surfaces (Ra < 25 μm), while the TPU specimens had much rougher surfaces (Ra > 40 μm). This investigation aims to uncover and explain phenomena that are unique to the MJF process of PA11 and TPU while also serving as a benchmark against similar polymeric parts printed using other PBF processes.


Sign in / Sign up

Export Citation Format

Share Document