Performance Investigate of Fine Aggregate Size and Content on Asphalt Mastic

2012 ◽  
Vol 424-425 ◽  
pp. 7-10
Author(s):  
Zhong Rong Zhu ◽  
Yong Ye

The objective of this study is to investigate and evaluate the compressive strength and creep behavior of fine aggregates on asphalt mastic. The variables that are considered in the study include the size and content of fine aggregates. Eight types of mastic specimens consisting of bitumen with various volume fractions of different kinds of fine aggregates were used. Unixal compression and static creep tests were realized at different loading conditions. The results found that, in general, asphalt mastics made with different aggregate sizes but same volume fraction (64%) have slight difference in compressive strength and creep values. However, those values show significant differences for mastics made with different volume fractions but same aggregate size (between 2.36 and 1.18 mm). Moreover, the asphalt mastic with 64% volume fraction has better deformation resistance.

2011 ◽  
Vol 225-226 ◽  
pp. 577-580
Author(s):  
Yong Ye ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of fine aggregates (aggregate size smaller than or equal to 2.36 mm) on the compressive strength and creep behavior of asphalt mixtures. The variables that are considered in the study include the sizes and gradations of fine aggregate. A kind of standant aggregate gradation and four kinds of reduced aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions. The test results showed that the different fine aggregate sizes do not result in significant differences in compressive strength and creep values using the same percentage of fine aggregates (38.4%). Only the different gradations showed a little differences for mixtures made with different gradations but same aggregate size (between 2.36 and 1.18 mm).


2013 ◽  
Vol 723 ◽  
pp. 480-487 ◽  
Author(s):  
Jiu Peng Zhang ◽  
Jian Zhong Pei ◽  
Yan Wei Li

To explain the interactive effect between asphalt and fillers in the asphalt mastic, it is probably to start with an assessment of the rheology properties, since asphalt mastics are viscoelastic materials. In this study, firstly prepare the asphalt mastics with different dosage of limestone filler, and the volume fractions of fillers were 0, 14, 24, 32, 39 and 45%. And then, the same asphalt is mixed with different fillers, such as cement and hydrated lime, and the volume fractions of fillers were 18, 23, 28and 33%. DSR test was conducted on all of the asphalt mastic specimens to measure the complex shear modulus G* at different temperature. The volume filling effects and interaction between asphalt and filler are discussed on the analysis of complex shear modulus coefficient and Nielsens model model. It is obviously that G* of asphalt mastics decrease with the test temperature, but increase with the volume fraction of filler. A function relation between complex shear modulus coefficient and volume fraction of fillers is established, and the interaction coefficient α is proposed. For limestone, cement and hydrated lime filler, the interaction coefficient α values are 0.301, 0.317 and 0.429 respectively. Based on Nielsens model and DSR test data, the Einstein coefficient KE is calculated, and Einstein coefficients are 3.761, 5.09 and 7.44 for asphalt-limestone mastic, asphalt-cement mastic and asphalt-hydrated lime mastic respectively. Both the interaction coefficient α and Einstein coefficient KE can be used to represent the interaction between asphalt binder and filler. The bigger value means the better interaction.


2021 ◽  
Vol 11 (4) ◽  
pp. 1952
Author(s):  
Euibae Lee ◽  
Jeongwon Ko ◽  
Jaekang Yoo ◽  
Sangjun Park ◽  
Jeongsoo Nam

In this study, the compressive strengths of concrete were investigated based on water content and aggregate volume fractions, comprising dune sand (DS), crushed sand (CS), and coarse aggregate (CA), for different ages. Experimental data were used to analyze the effects of the volume fraction changes of aggregates on the compressive strength. The compressive strength of concrete increases until the volumetric DS to fine aggregate (FA) ratio (DS/FA ratio) reaches 20%, after which it decreases. The relationship between changes in compressive strength and aggregate volume fractions was analyzed considering the effect factor of each aggregate on the compressive strength and at 2 conditions: (1) 0 < DS < CS < CA and (2) 0 < CA < CS < DS. For condition (1), when the effect factor of CA = 1, those of DS and CS were within 0.04–0.83 and 0.72–0.92, respectively, for all mixtures. For condition (2), when the effect factor of DS = 1, those of CS and CA were within 0.68–0.80 and 0.02–0.79, respectively.


Author(s):  
Sunir Hassan ◽  
C. Lakshmana Rao ◽  
K. Ganesh Babu

Fiber reinforced concrete has been identified as a particulate composite consisting of hardened cement paste, fine aggregates, coarse aggregates, particulate fibers etc. and each constituent plays a significant role in the combined quasi brittle behaviour of the material. From the view point of a numerical modeler, a two phase model consisting of a matrix phase and a coarse aggregate phase is simple and sufficient enough to take care of the heterogeneity without affecting the capability of the model to predict the material behaviour as reported by Ghouse et al [1]. Thus the unit cell under consideration is modeled as a square with an inner circle (Fig. 1), the square representing the total volume fraction of combined properties of cement paste, fine aggregates, particulate fibers and water. The inner circle represents the total volume fraction of coarse aggregates in the material. This representative volume fraction is assigned with periodic boundary conditions to ensure uniformity in deformation and to avoid any discontinuities in the material once the unit cell has been repeatedly arranged to build up the macro sized material and has undergone deformation in elastic range. Ghouse et al [1] could identify only slight variations in the compressive strength of normal low strength concrete with varying aggregate volume fractions. A comparatively decreasing trend in compressive strength has also been observed initially when glass fiber reinforced high strength cement composite (GFRCC) was analyzed by Sunir et al [2]. Investigations proceed in the direction of predicting the material behaviour by replacing the glass fiber and its volume fraction with polypropylene fibers considered by Pavan [3] as being significant in improving the mechanical characteristics of the macro composite under consideration. An analysis of polymer fiber reinforced high strength concrete (PFRC) with similarly varying aggregate volume fractions could predict significantly decreasing trends in compressive strength for lower volume fractions. In future, the ease with which the unit cell approach predicts the behaviour of fiber reinforced plain mortar is also to be investigated in a similar manner.


2013 ◽  
Vol 811 ◽  
pp. 223-227
Author(s):  
Yong Ye ◽  
Hong Kai Chen ◽  
Yi Zhou Cai

The objective of this study is to investigate and evaluate the effect of coarse aggregates (aggregate size bigger than 2.36 mm) on the compressive strength and creep behavior of asphalt mixture. The variable that is mainly considered in the study is the gradation degradation of coarse aggregates. A kind of standard aggregate gradation and three kinds of degraded aggregate gradation mixture specimens are used. Uniaxial compression and static creep tests were realized at different loading conditions and temperatures. The test results on asphalt mixture showed that the compressive strength and creep behavior of asphalt mixture are significant affected by the different coarse aggregate gradations.


2021 ◽  
Vol 6 (2) ◽  
pp. 96-103
Author(s):  
Ranno Marlany Rachman ◽  
Try Sugiyarto Soeparyanto ◽  
Edward Ngii

This research aimed to utilize Anadara Granosa (Blood clam shell) clamshell waste as a new innovation in concrete technology and to investigate the effect of Anadara Granosa clamshell powder utilization as an aggregate substitution on the concrete compressive strength. The sample size was made of cylinders with a size of 10 cm x 20 cm with variations of clamshell powder 10%, 20% and 30% from the fine aggregate volume then soaked for 28 days as per the method of the Indonesian National Standard. The evaluation results exhibited that the slump value exceeded the slump value of normal concrete with a slump value of 0% = 160 mm, 10% = 165 mm, 20% = 180 mm and 30% = 180 mm. Additionally, it was found that the concrete compressive strength obtained post 28 days were 20.78 Mpa, 21.95 Mpa, 21.17 Mpa and 24.28 Mpa for normal concrete (0%), substitution concrete (10%), substitution concrete (20%) and substitution concrete (30%), respectively. Leading on from these results, it was concluded that the increment of Anadara Granosa clamshell powder substitution led to the increase of concrete compressive strength test.


Author(s):  
Henry Tata Kimeng ◽  
Olurotimi Olusegun Ekundayo ◽  
Mustapha Sani ◽  
Kigha Frederick

Issues bothering on sustainability in our society today have generated a lot of curious interest among researchers. The need to optimize the use of scarce resources, reduce cost of construction, and reduce environmental pollution has necessitated the research into many waste materials that pose a lot of threat to the environment. One of these waste materials is groundnut shell which is abundant in Northern Nigeria and which is normally left to rot and pose an environmental nuisance. This research therefore sought to use groundnut shell as a partial or full replacement as fine aggregate in light concrete panels with the ultimate aim of reducing the amount of these waste products in our environment and also indirectly increasing groundnut production if the research is successful. This is because farmers will not only sell the groundnuts but also will sell the waste products. 63 concrete samples were casted using groundnut shell replacements of 0%, 10%, 20%, 30%, 50%, 70%, 100% and tested for 7days, 14days and 28 days for compressive strength tests. The density of the various samples measured and swelling tests were also carried out. From the results of the laboratory tests the density of the cubes ranged from 830kg/m3 for cubes with only groundnut shells to 2160kg/m3 for cubes with only sand as fine aggregates. The average compressive strength range for 0% ground shell to 100% ground shell was 5.83N/mm2 to 0.9N/mm2 at 7 days, 8.07 to 0.5 N/mm2 at 14 days and 10 to 0.6 N/mm2 at 28 days while moisture absorption increased from 0.47 to 2.04%. The strength results indicate that groundnut shell panels cannot be used for structural purposes but will be suitable for non-load bearing partition walls. Replacements of 30 to 70% had suitable strength and can be used for this purpose. It is recommended that further research to be carried out to determine its acoustic and thermal properties.


Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Zhishu Yao ◽  
Yu Fang ◽  
Weihao Kong ◽  
Xianwen Huang ◽  
Xuesong Wang

In order to study the static and dynamic mechanical characteristics of the coal gangue concrete used in the mine support structure, the compressive strength test, the drop weight impact test, and the Split Hopkinson Pressure Bar (SHPB) test were conducted. The compressive strength, initial and final impacting energy, dynamic strength, and failure characteristic of concrete were obtained of the concrete single-doped with coal gangue coarse aggregate, single-doped with coal gangue fine aggregate, and codoped with coal gangue coarse and fine aggregates. The results show that (1) it is feasible that employing coal gangue to replace natural coarse and fine aggregates in concrete can prepare C30 and C40 concrete; (2) the addition of coal gangue fine aggregate has a positive effect on the impact energy of the initial and final cracks of concrete, while the addition of coal gangue coarse aggregate has a negative effect on it; (3) compared with the static strength, the dynamic strength of concrete is improved no matter whether coal gangue is added to concrete; (4) the incorporation of coal gangue coarse aggregate will make the concrete shear surface smooth; (5) at the given impacting pressure, the concrete with coal gangue coarse aggregate has greater particle breakage and those with coal gangue fine aggregate has less. The research of this study can be a reference for the application of gangue concrete in mine support structures.


2019 ◽  
Vol 26 (1) ◽  
pp. 449-464 ◽  
Author(s):  
Mifeng Gou ◽  
Longfei Zhou ◽  
Nathalene Wei Ying Then

AbstractOne of the advantages of cement and the cement concrete industry in sustainability is the ability to utilize large amounts of industrial solid wastes such as fly ash and ground granulated blast furnace slag. Tailings are solid wastes of the ore beneficiation process in the extractive industry and are available in huge amounts in some countries. This paper reviews the potential utilization of tailings as a replacement for fine aggregates, as supplementary cementitious materials (SCMs) in mortar or concrete, and in the production of cement clinker. It was shown in previous research that while tailings had been used as a replacement for both fine aggregate and cement, the workability of mortar or concrete reduced. Also, at a constant water to cement ratio, the compressive strength of concrete increased with the tailings as fine aggregate. However, the compressive strength of concrete decreased as the replacement content of the tailings as SCMs increased, even whentailings were ground into smaller particles. Not much research has been dedicated to the durability of concrete with tailings, but it is beneficial for heavy metals in tailings to stabilize/solidify in concrete. The clinker can be produced by using the tailings, even if the tailings have a low SiO2 content. As a result, the utilization of tailings in cement and concrete will be good for the environment both in the solid waste processing and virgin materials using in the construction industry.


Sign in / Sign up

Export Citation Format

Share Document