Water Absorption and Modification of Kenaf and Flax Fibres

2012 ◽  
Vol 545 ◽  
pp. 342-347 ◽  
Author(s):  
Masitah Abu Kassim ◽  
A. Crosky ◽  
David Ruys

The experimental work for this project involved several strands; to study the water absorption characteristic of kenaf and flax in composites, to investigate the influence of fibre types on water absorption, and finally to investigate the influence of chemical treatment on water absorption. Hydrophilic character of natural fibres is responsible for the water absorption in the composites. Water absorption of kenaf and flax reinforced polyester composites was occurred via fibres lumen. Mechanical properties are affected by water absorption. After water absorption test, the specimens present poor mechanical properties such as lower value of flexural strength and flexural modulus. The matrix structure was also affected by water absorption by processes such as chain orientation and shrinkage. It was found that the different fibre types had influenced the different percentage of water absorption in composite. It seems that the compatibilization between fibres and matrix has influenced the water absorption of fibres. Acetylation of kenaf and flax fibres has reduced the hygroscopic nature of natural fibres and increased the dimensional stability of composites. The flexural strength properties of acetylated fibres were higher than untreated fibres composites.

2011 ◽  
Vol 217-218 ◽  
pp. 347-352 ◽  
Author(s):  
Chun Xia He ◽  
Jun Jun Liu ◽  
Pan Fang Xue ◽  
Hong Yan Gu

The influence of the rice husks powder (RHP) content and its particle size distribution on the composite’s tensile strength, fracturing elongation ratio, flexural strength and flexural elastic modulus has been investigated. Respective water absorption and thermal properties of PP composites incorporated with different proportion of RHP have also been analyzed. The microstructure of fractured surfaces was further observed in scanning electron microscopy (SEM). The results showed that the composites with RHP of 245 μm have higher mechanical properties. The tensile strength and fracturing elongation ratio decrease with the increase of RHP content, and reach peak values in 30% RHP content. Water absorption and volume expansion ratio of the composite increase with the increasing of RHP content. Flexural strength and flexural modulus decrease after water absorption. When PHR content is low, the RHP particles are well distributed and the interface of RHP and PP is smooth. When PHR content is higher, the RHP particles tend to agglomerate, leading to poorer interface and lower mechanical properties, the composite failed with brittle fracture.


2019 ◽  
Vol 8 (4) ◽  
pp. 6972-6977

The use of natural fiber composite has been widely promoted in many industries such as construction, automotive and even aerospace. Natural fibers can be extracted from plants that are abundantly available in the form of waste such as sunflower seed shells (SSS) and groundnut shells (GNS). These fibers were chosen as the reinforcement in epoxy to form composites. The performance of composites was evaluated following the ASTM D3039 and ASTM D790 for tensile and flexural tests respectively. Eight types of composites were prepared using SSS and GNS fibers as reinforcement and epoxy as the matrix with the fiber content of 20wt %. The fibers were untreated and treated with Sodium Hydroxide (NaOH) at various concentrations (6%, 10%, 15%, and 20%) and soaking time (24, 48 and 72 hours). The treatment has successfully enhanced the mechanical properties of both composites, namely SSS/epoxy and GNS/epoxy composites. The SSS/epoxy composite has the best mechanical properties when the fibers were treated for 48 hours using 6% of NaOH that produced 22 MPa and 13 MPa of tensile and flexural strength respectively. Meanwhile, the treatment on groundnut shells with 10% sodium Hydroxide for 24 hours has increased the Flexural strength tremendously (53%), however no significant effect on the tensile strength. The same trend was also observed on the tensile and flexural modulus. The increase of 41% in flexural modulus after treatment with 10% NaOH for 24 hours was also the evidence of mechanical properties enhancement. The evidence of improved fiber and matrix bonding after fiber treatment was also observed using a scanning electron microscope (SEM). The SSS/epoxy composites performed better in tensile application, meanwhile the GNS/epoxy composites are good in flexural application.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2268
Author(s):  
Pavel V Kosmachev ◽  
Vladislav O Alexenko ◽  
Svetlana A Bochkareva ◽  
Sergey V Panin

Laminated composites based on polyetheretherketone (PEEK) and polyimide (PI) matrices were fabricated by hot compression. Reinforcing materials (unidirectional carbon-fiber (CF) tapes or carbon fabric) and their layout patterns were varied. Stress–strain diagrams after three-point flexural tests were analyzed, and both lateral faces of the fractured specimens and fractured surfaces (obtained by optical and scanning electron microscopy, respectively) were studied. It was shown that the laminated composites possessed the maximum mechanical properties (flexural elastic modulus and strength) in the case of the unidirectional CF (0°/0°) layout. These composites were also not subjected to catastrophic failure during the tests. The PEEK-based composites showed twice the flexural strength of the PI-based ones (0.4 and 0.2 GPa, respectively), while the flexural modulus was four times higher (60 and 15 GPa, correspondently). The reason was associated with different melt flowability of the used polymer matrices and varied inter- (intra)layer adhesion levels. The effect of adhesion was additionally studied by computer simulation using a developed two-dimensional FE-model. It considered initial defects between the binder and CF, as well as subsequent delamination and failure under loads. Based on the developed FE-model, the influence of defects and delamination on the strength properties of the composites was shown at different stress states, and the corresponding quantitative estimates were reported. Moreover, another model was developed to determine the three-point flexural properties of the composites reinforced with CF and carbon fabric, taking into account different fiber layouts. It was shown within this model framework that the flexural strength of the studied composites could be increased by an order of magnitude by enhancing the adhesion level (considered through the contact area between CF and the binder).


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1745
Author(s):  
Tamaki Hada ◽  
Manabu Kanazawa ◽  
Maiko Iwaki ◽  
Awutsadaporn Katheng ◽  
Shunsuke Minakuchi

In this study, the physical properties of a custom block manufactured using a self-polymerizing resin (Custom-block), the commercially available CAD/CAM PMMA disk (PMMA-disk), and a heat-polymerizing resin (Conventional PMMA) were evaluated via three different tests. The Custom-block was polymerized by pouring the self-polymerizing resin into a special tray, and Conventional PMMA was polymerized with a heat-curing method, according to the manufacturer’s recommended procedure. The specimens of each group were subjected to three-point bending, water sorption and solubility, and staining tests. The results showed that the materials met the requirements of the ISO standards in all tests, except for the staining tests. The highest flexural strength was exhibited by the PMMA-disk, followed by the Custom-block and the Conventional PMMA, and a significant difference was observed in the flexural strengths of all the materials (p < 0.001). The Custom-block showed a significantly higher flexural modulus and water solubility. The water sorption and discoloration of the Custom-block were significantly higher than those of the PMMA-disk, but not significantly different from those of the Conventional PMMA. In conclusion, the mechanical properties of the three materials differed depending on the manufacturing method, which considerably affected their flexural strength, flexural modulus, water sorption and solubility, and discoloration.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2015 ◽  
Vol 35 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Rahim Eqra ◽  
Kamal Janghorban ◽  
Habib Daneshmanesh

Abstract Because of extraordinary physical, chemical and mechanical properties, graphene nanosheets (GNS) are suitable fillers for optimizing the properties of different polymers. In this research, the effect of GNS content (up to 1 wt.%) on tensile and flexural properties, morphology of fracture surface, and toughening mechanism of epoxy were investigated. Results of mechanical tests showed a peak for tensile and flexural strength of samples with 0.1 wt.% GNS such that the tensile and flexural strength improved by 13% and 3.3%, respectively. The Young’s modulus and flexural modulus increased linearly with GNS content, although the behavior of the Young’s modulus was more remarkable. Morphological investigations confirmed this behavior because the GNS dispersion in the epoxy matrix was uniform at lower contents and agglomerated at higher contents. Finally, microscopical observation showed that the major toughening mechanism of graphene-epoxy nanocomposites was crack path deflection, which changed the mirror fracture surface of the pure epoxy to rough surface.


2018 ◽  
Vol 7 (2) ◽  
pp. 897
Author(s):  
A I. Alateyah ◽  
F H. Latief

Polypropylene/exfoliated graphite nanoplatelets composites reinforced with a low concentration of nano-magnesia have been successfully fabricated, using injection molding machine. The mechanical properties and microstructure of the composites were investigated, in the present study. The XRD patterns of the composites showed the peaks of xGnP and n-MgO, where the intensity of the xGnP peaks became stronger with increasing the concentration of xGnP added into polypropylene matrix. In addition, the SEM micrographs revealed a good dispersion of fillers within the matrix. The results showed that increasing the amount of exfoliated graphite nanoplatelets up to 10 wt. % resulted in increasing the composite flexural strength, flexural modulus, and hardness up to 35% and 91%, 6.7%, respectively, compared to the monolithic polypropylene.  


2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


2015 ◽  
Vol 10 (2) ◽  
pp. 213-217 ◽  
Author(s):  
N. C. de Araújo ◽  
A. P. Ramos ◽  
A. J. P. Queiroz ◽  
R. C. dos Santos ◽  
J. Da S. Buriti

A vantagem do processo de fabricação de tijolos com manipueira é ser ecologicamente correto, pois não consome água, nem há necessidade de ir ao forno, economizando recursos naturais e fazendo uso de um efluente altamente poluente. Assim, este trabalho objetivou analisar as propriedades mecânicas de tijolos fabricados com solo associado à manipueira como alternativa sustentável. Foram avaliados os parâmetros absorção de água e resistência à flexão. Em conformidade com os resultados, observou-se que as massas cerâmicas apresentaram valores de absorção de água da ordem de 10 a 13 %, valores aceitáveis para fabricação de blocos cerâmicos e valores de resistência a flexão adequados para fabricação de tijolos maciços, tanto, os corpos de prova com queima quanto os corpos de provas sem queima. Assim, conclui-se que a troca da água pela adição da manipueira na massa cerâmica não interfere nas propriedades mecânicas e esta pode ser adicionada a massa cerâmica para fabricação de tijolos ecológicos através do processo de prensagem.Mechanical properties of manufactured bricks with soil and cassava wastewaterAbstract: The advantage of the manufacturing process of brick with cassava is being environmentally friendly because it does not consume water, and there is no need to go to the oven, saving natural resources and making use of a highly polluting effluent. This work aimed to analyze the mechanical properties of bricks made from soil associated with cassava as a sustainable alternative. Parameters were evaluated water absorption and flexural strength. In accordance with the results, it was observed that the ceramic material provided water absorption values of the order of 10 to 13%, acceptable values for manufacturing ceramic blocks and bending strength values suitable for manufacture of solid bricks, both proof bodies test with burns as the proof bodies of evidence without burning. It is therefore concluded that the replacement of water by the addition of cassava the ceramic mass does not interfere with the mechanical properties and that can be added to the ceramic paste for manufacturing green bricks through the pressing process.


Sign in / Sign up

Export Citation Format

Share Document