Analysis of Inclusion Microstructure in Material Engineering of Steel

2012 ◽  
Vol 568 ◽  
pp. 324-327
Author(s):  
Ding Guo Zhao ◽  
Shu Huan Wang ◽  
Ming Jian Guo

The sample of oxide inclusion was obtained in the different stage of steelmaking for the 65 steel. The microstructure was observed by using scanning electron microscopy (SEM) to analyze the composition and type of inclusions. It was shown that the microscopic inclusions in the high carbon steel were mainly massive and cluster Al2O3, spherical and slope silicate inclusion, calcium-aluminates inclusions and sulphide complex inclusions. The measures including raw material requirement, improving of the converter, LF refining and continuous casting operations were put forward to decrease inclusion.

2012 ◽  
Vol 18 (S2) ◽  
pp. 1938-1939
Author(s):  
M.W. Pendleton ◽  
C. Mazzella

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


1983 ◽  
Vol 21 ◽  
Author(s):  
E. Ramous ◽  
L. Giordano ◽  
G. Principi ◽  
A. Tiziani

ABSTRACTThe power laser has been applied to the surface melting of a high-carbon alloy steel with laser operating parameters leading to structures which cannot be produced by the usual heat-treatments. The subsequent annealing of these structures has also been investigated. Optical and scanning electron microscopy, X-ray diffraction and Mössbauer spectroscopy have been used as methods of analysis.


2012 ◽  
Vol 189 ◽  
pp. 40-43
Author(s):  
Ding Guo Zhao ◽  
Shu Huan Wang ◽  
He Jun Zhang

The contents of oxygen and nitrogen were important effect on the high speed wire in smelting high carbon steel. Sampled from the process of producing wire rod in Xuanhua iron and steel company and analyzed the contents of oxygen and nitrogen. The quality and size of oxide and nitride were numerical statement in differernt terms. The results were shown that the size of micro inclusion was less than 15 μm, and the inclusion size was not big, but the quantity was large. The quantity of micro inclusions in wire rod was about 10 /mm2 (equivalent diameter of 5 μm). Through the practice analysis and research, we put forward the measures of inclusion control for 65 steel including raw material requirement, improving of the converter, LF refining and continuous casting operations.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2021 ◽  
Vol 1 (1) ◽  
pp. 51
Author(s):  
Alfan Ekajati Latief ◽  
Syahril Sayuti ◽  
Rakean Wide Windujati

 ABSTRAKTanto merupakan senjata tajam yang berasal dari Jepang dan merupakan senjata kedua bagi para Samurai di Jepang. Tanto biasa terbuat dari baja karbon menengah hingga baja karbon tinggi yang. Material baja yang digunakan untuk pembuatan Tanto dalam penelitian ini adalah baja AISI seri O1 karena memiliki karakteristik sifat mampu bentuk yang baik serat dapat dikuatkan melalui proses heat treatment. Material baja ini dibuat dengan proses tempa lipat  dengan variasi tempa empat lipatan dan satu lipatan. Pembuatan Tanto dan spesimen uji dilakukan dengan proses tempa lipat secara konvensional menggunakan tungku arang, dengan temperatur tempa rata-rata yaitu ±1200oC, kemudian dilanjutkan dengan quenching pada temperatur ± 850oC, serta tempering pada temperatur ±250oC. Penelitian ditujukan untuk mengetahui pengaruh dari proses tempa empat lipatan dan tempa satu lipatan terhadap sifat mekanik, yaitu kekerasan dan kekuatan impak serta untuk melihat perubahan pada struktur mikro. Hasil pengujian menunjukkan bahwa nilai kekerasan paling tinggi sebesar41HRC yang dimiliki oleh pada raw material, ,sedangkan nilai impak paling tinggi sebesar 224,02 Joule/cm² ayng dicapai oleh material dengan proses tempa empat lipatan, Fasa akhir yang ditemukan pada baja tempa empat lipatan adalah  bainit dan martensit, sementara  perlit dan ferit ditemukan  pada baja satu lipatan, dan lath martensit ditemukan pada pada raw material  Kata kunci: Pisau Tanto, Tempa lipat ,Quenching, Tempering, Uji Impak  ABSTRACT Tanto is a sharp weapon originating  from Japan and is the second weapon for Samurai in Japan. Tanto is usually made of medium carbon steel to high carbon steel. The material which is used in this research is AISI O1 series steel because of its high ability to be formed and also can be made tough through a heat treatment process. This steel is made by folding forge process, with variation in number of folding, which is 4 folds and 1 fold. The making of Tanto and test specimens was carried out by conventional fold forging processes by using a charcoal furnace, with an average forging temperature at ± 1200oC, continue with quenching at ± 850oC, and tempering at ± 250oC. The research is carried out in order to determine the effect of the four-folds forging and one-fold forging to the mechanical behavior, which are hardness and impact strength,  and also to see change in its micro structure. The test that have been carried out shows that the highest hardness value of 41 HRC owned by raw material, while the highest impact value of 224.02 Joules / cm² obtained by material with four layer forging process. Final phases that found in the four-fold forged steel are bainite and martensite, pearlite and ferrite found in one-fold forged steel. and lath martensite in found in the raw material. Keywords: Tanto Knife, Folding Forging, Quenching, Tempering, Testing, Impact Tests


Author(s):  
Anar Kareeva ◽  
Uilesbek Besterekov ◽  
Perizat Abdurazova ◽  
Ulzhalgas Nazarbek ◽  
Irina Pochitalkina ◽  
...  

Abstract The article presents the results of studies of the process of obtaining NPK fertilizer from low-grade phosphate raw materials with P2O5 of about 18%. Phosphate raw materials were leached with a mixture of nitric-phosphoric acids with the addition of potassium carbonate, which serves as a source of potassium in the final product. The main parameters determined were the content of the main nutrients P2O5:N:K2O, temperature and time of the leaching process. According to the graphical method, the “apparent” activation energy of the heterogeneous process is found, which is equal to 3.8 kJ/mol indicates the intradiffusion nature of the process. Methods of chemical analysis, scanning electron microscopy and XRD analysis were used for a comprehensive study of raw materials and final products.


2012 ◽  
Vol 610-613 ◽  
pp. 2356-2360
Author(s):  
Hong Liang Hua ◽  
Yun Wang ◽  
Yu Jia Wang ◽  
Shi Jun Ruan ◽  
Chao Zeng ◽  
...  

After washing, milling and calcining, the graphite rods recycled from waste dry batteries were used as raw material to prepare expandable graphite by chemical oxidation (using acetic anhydride as inserting and potassium dichromate as oxidant), the expanded graphite was prepared from the obtained expandable graphite by microwave radiation (MW) at 1000W for 60s.The characterization of infrared spectroscopy (IR) and scanning electron microscopy (SEM) of obtained expanded graphite have been discussed. The results show that it is feasible to prepare expanded graphite using graphite rods recycled from waste dry batteries.


2015 ◽  
Vol 21 (5) ◽  
pp. 1314-1326 ◽  
Author(s):  
Josefa Roselló ◽  
Lourdes Soriano ◽  
M. Pilar Santamarina ◽  
Jorge L. Akasaki ◽  
José Luiz P. Melges ◽  
...  

AbstractAgrowastes are produced worldwide in huge quantities and they contain interesting elements for producing inorganic cementing binders, especially silicon. Conversion of agrowastes into ash is an interesting way of yielding raw material used in the manufacture of low-CO2 binders. Silica-rich ashes are preferred for preparing inorganic binders. Sugarcane leaves (Saccharum officinarum, SL) and bamboo leaves (Bambusa vulgaris, BvL and Bambusa gigantea, BgL), and their corresponding ashes (SLA, BvLA, and BgLA), were chosen as case studies. These samples were analyzed by means of optical microscopy, Cryo-scanning electron microscopy (SEM), SEM, and field emission scanning electron microscopy. Spodograms were obtained for BvLA and BgLA, which have high proportions of silicon, but no spodogram was obtained for SLA because of the low silicon content. Different types of phytoliths (specific cells, reservoirs of silica in plants) in the studied leaves were observed. These phytoliths maintained their form after calcination at temperatures in the 350–850°C range. Owing to the chemical composition of these ashes, they are of interest for use in cements and concrete because of their possible pozzolanic reactivity. However, the presence of significant amounts of K and Cl in the prepared ashes implies a limitation of their applications.


2014 ◽  
Vol 809-810 ◽  
pp. 384-389
Author(s):  
Lang He ◽  
Yu Tang

High temperature thermoplastic of 50Mn2V casting slab was tested by Gleeble-1500 thermal simulator machine. The morphology, microstructure and composition of fracture surfacewere observed and analyzed by optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that, there are two brittle temperature zones of 50Mn2V casting slab at the temperature of 600~950°C and 1300~1465°C, respectively, The section shrinkaging rate is less than 60%. The fracture mode changes from mixed one dominated by intergranular to toughness transgranular one with the increase of temperature at the range of 600~1250°C. However, the fracture is along with the solid-liquid phase at the range of 1300°C~ melting point.


Sign in / Sign up

Export Citation Format

Share Document