Adsorption of Soluble Metal Ions from Red Mud by Modified Activated Carbon

2008 ◽  
Vol 368-372 ◽  
pp. 1541-1544 ◽  
Author(s):  
Hua Lei Zhou ◽  
Dong Yan Li ◽  
Guo Zhuo Gong ◽  
Ya Jun Tian ◽  
Yun Fa Chen

Activated carbon was employed as the adsorption carrier for the metal ions in HCl solution of red mud, a solid waste produced in alumina industry. To improve the adsorption capacity to valuable metal ions, the activated carbon was modified by chemicals including HNO3, H2O2, H2SO4, H3PO4, NH3, Na2CO3, and tri-butyl phosphate (TBP). It was found that the modifications contributed the high adsorption capacity to almost all metal ions we focused on. In the case of TBP, remarkably higher adsorption capacity and selectivity of Sc3+ was observed. The correlation between the surface areas, IR spectra of those chemically modified activated carbons and adsorption was schemed.

2013 ◽  
Vol 726-731 ◽  
pp. 1883-1889
Author(s):  
Brim Stevy Ondon ◽  
Bing Sun ◽  
Zhi Yu Yan ◽  
Xiao Mei Zhu ◽  
Hui Liu

Microwave energy was used to prepare modified activated carbons (GAC, GAC/MW, GAC/Ni, and GAC/Cu). The modified activated carbons were used for phenol adsorption in aqueous solution. The adsorption conditions were optimized. Adsorption capacities of the different modified activated carbons were evaluated. The effect of microwave pretreatment of activated carbons was investigated. A comparative study on the activated carbons adsorption capacities was also investigated. Under optimal conditions the results showed that there was no obvious effect on activated carbons adsorption when rising temperature and pH during the adsorption process. Stirring has a very high effect on the activated carbons adsorption capacity. The adsorption capacity of the modified activated carbons reaches 95%. MW/GAC, GAC/Ni and GAC/Cu adsorptive capacity was higher compared to the Granulated Activated Carbon (GAC) used as received. GAC treated with microwave energy has highest adsorption capacity. The adsorption capacity of GAC loaded with ion Ni2+ is higher than the activated carbon loaded with Cu2+. The untreated GAC has the lowest adsorption capacity. These results can be explained by the effect of microwave irradiation on GAC.The activated carbon loaded with Ni2+ adsorbs more microwave energy than the GAC loaded with Cu2+.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Nelson Giovanny Rincón-Silva ◽  
Juan Carlos Moreno-Piraján ◽  
Liliana Giraldo Giraldo

Activated carbons from shell eucalyptus (Eucalyptus globulus) were prepared by chemical activation through impregnation with solutions of two activators: sulfuric acid and sodium hydroxide, the surface areas for activated carbons with base were 780 and 670 m2 g−1and the solids activated with acid were 150 and 80 m2 g−1. These were applying in adsorption of priority pollutants: phenol, 4-nitrophenol, and 4-chlorophenol from aqueous solution. Activated carbon with the highest adsorption capacity has values of 2.12, 2.57, and 3.89 on phenol, 4-nitrophenol, and 4-chlorophenol, respectively, and was activated with base. In general, all carbons adsorption capacity was given in the following order: 4-chlorophenol > 4-nitrophenol > phenol. Adsorption isotherms of phenols on activated carbons were fitted to the Langmuir, Freundlich, and Dubinin-Radusckevisch-Kanager models, finding great association between them and experimental data. A thermodynamic study was performed, the exothermic nature and spontaneous nature of the adsorption process were confirmed, and the favorability of adsorption on activated carbons with NaOH was confirmed by energy relations and concluded that the adsorption process of phenolic compounds from the activated carbon obtained is physical. The pH of solutions and pH at point of zero charge of the solid play an important role in the adsorption process.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7045
Author(s):  
Justyna Kazmierczak-Razna ◽  
Anetta Zioła-Frankowska ◽  
Piotr Nowicki ◽  
Marcin Frankowski ◽  
Robert Wolski ◽  
...  

This paper deals with the adsorption of heavy metal ions (Cu2+ and Zn2+) on the carbonaceous materials obtained by chemical activation and ammoxidation of Polish brown coal. The effects of phase contact time, initial metal ion concentration, solution pH, and temperature, as well as the presence of competitive ions in solution, on the adsorption capacity of activated carbons were examined. It has been shown that the sample modified by introduction of nitrogen functional groups into carbon structure exhibits a greater ability to uptake heavy metals than unmodified activated carbon. It has also been found that the adsorption capacity increases with the increasing initial concentration of the solution and the phase contact time. The maximum adsorption was found at pH = 8.0 for Cu(II) and pH = 6.0 for Zn(II). For all samples, better fit to the experimental data was obtained with a Langmuir isotherm than a Freundlich one. A better fit of the kinetic data was achieved using the pseudo-second order model.


2013 ◽  
Vol 743-744 ◽  
pp. 545-550 ◽  
Author(s):  
Juan Liu ◽  
Hui Ping Fan ◽  
Guo Zhuo Gong ◽  
Qiang Xie

Four kinds of commercial activated carbons were soaked in sodium hydroxide after modification with 10% nitric acid. Nickel adsorption isotherms for modified activated carbons before and after sodium hydroxide treatment were tested. The surface groups were characterized by the Fourier transform infrared spectroscopy and Boehm titration, the adsorption properties were determined by the iodine number and methylene blue number, the pHIEP were deduced by the Zeta potential analyzer. The results showed that nitric acid blocks the pore, while enhances the content of acid groups, especially carboxyl resulting in the decrease of nickel adsorption capacity. After sodium hydroxide treatment, the nickel capacity of activated carbon from anthracite, long flame coal, lignite and coconut increased by 21.5%, 116%, 78.9%, 89.1% comparing with the virgin activated carbon, respectively. The overall research indicated that nickel ion adsorption capacity of activated carbon can be improved only when the acid groups are transferred into anion, and the modification is more effective on the activated carbon prepared by low metamorphic grade coal.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3481
Author(s):  
Joanna Lach ◽  
Agnieszka Ociepa-Kubicka ◽  
Maciej Mrowiec

The aim of the work was to evaluate the possibility of using commercial and modified activated carbons for the removal of oxytetracycline from aqueous solutions. The kinetics and statics of adsorption as well as the effect of the activated carbon dose and solution pH on the efficiency of the oxytetracycline adsorption were analyzed. Based on the study of oxytetracycline adsorption isotherms, the activated carbons were ranked in the following order: F-300 > WG-12 > Picabiol > ROW08 > WACC 8 × 30 > F-100 > WAZ 0.6–2.4. The most effective activated carbons were characterized by large specific surfaces. The best matching results were obtained for: Redlich–Peterson, Thot and Jovanovic models, and lower for the most frequently used Freundlich and Langmuir models. The adsorption proceeded better from solutions with pH = 6 than with pH = 3 and 10. Two ways of modifying activated carbon were also assessed. A proprietary method of activated carbon modification was proposed. It uses the heating of activated carbon as a result of current flow through its bed. Both carbons modified at 400 °C in the rotary kiln and on the proprietary SEOW (Joule-heat) modification stand enabled to obtain adsorbents with higher and comparable monolayer capacities. The advantage of the proposed modification method is low electricity consumption.


2015 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Mohamad M. Diémé ◽  
Maxime Hervy ◽  
Saïdou N. Diop ◽  
Claire Gérente ◽  
Audrey Villot ◽  
...  

<p>The objective of this study was to investigate the production of activated carbons (AC) from cashew shells, and millet stalks and their efficiency in fluoride retention. These agricultural residues are collected from Senegal. It is known that some regions of Sénégal, commonly called the groundnut basin, are affected by a public health problem caused by an excess of fluoride in drinking water used by these populations. The activated carbons were produced by a combined pyrolysis and activation with water steam; no other chemical compounds were added. Then, activated carbonaceous materials obtained from cashew shells and millet stalks were called CS-H<sub>2</sub>O and MS-H<sub>2</sub>O respectively. CS-H<sub>2</sub>O and MS-H<sub>2</sub>O show very good adsorbent features, and present carbon content ranges between 71 % and 86 %. The BET surface areas are 942 m² g<sup>-1</sup> and 1234 m².g<sup>-1</sup> for CS-H<sub>2</sub>O and MS-H<sub>2</sub>O respectively. A third activated carbon produced from food wastes and coagulation-flocculation sludge (FW/CFS-H<sub>2</sub>O) was produced in the same conditions. Carbon and calcium content of FW/CFS-H<sub>2</sub>O are 32.6 and 39.3 % respectively. The kinetics sorption were performed with all these activated carbons, then the pseudo-first equation was used to describe the kinetics sorption. Fluoride adsorption isotherms were performed with synthetic and natural water with the best activated carbon from kinetics sorption, Langmuir and Freundlich models were used to describe the experimental data. The results showed that carbonaceous materials obtained from CS-H<sub>2</sub>O and MS-H<sub>2</sub>O were weakly efficient for fluoride removal. With FW/CFS-H<sub>2</sub>O, the adsorption capacity is 28.48 mg.g<sup>-1 </sup>with r² = 0.99 with synthetic water.</p>


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2237
Author(s):  
Sara Stelitano ◽  
Giuseppe Conte ◽  
Alfonso Policicchio ◽  
Alfredo Aloise ◽  
Giovanni Desiderio ◽  
...  

Pinecones, a common biomass waste, has an interesting composition in terms of cellulose and lignine content that makes them excellent precursors in various activated carbon production processes. The synthesized, nanostructured, activated carbon materials show textural properties, a high specific surface area, and a large volume of micropores, which are all features that make them suitable for various applications ranging from the purification of water to energy storage. Amongst them, a very interesting application is hydrogen storage. For this purpose, activated carbon from pinecones were prepared using chemical activation with different KOH/precursor ratios, and their hydrogen adsorption capacity was evaluated at liquid nitrogen temperatures (77 K) at pressures of up to 80 bar using a Sievert’s type volumetric apparatus. Regarding the comprehensive characterization of the samples’ textural properties, the measurement of the surface area was carried out using the Brunauer–Emmett–Teller method, the chemical composition was investigated using wavelength-dispersive spectrometry, and the topography and long-range order was estimated using scanning electron microscopy and X-ray diffraction, respectively. The hydrogen adsorption properties of the activated carbon samples were measured and then fitted using the Langmuir/ Töth isotherm model to estimate the adsorption capacity at higher pressures. The results showed that chemical activation induced the formation of an optimal pore size distribution for hydrogen adsorption centered at about 0.5 nm and the proportion of micropore volume was higher than 50%, which resulted in an adsorption capacity of 5.5 wt% at 77 K and 80 bar; this was an increase of as much as 150% relative to the one predicted by the Chahine rule.


2013 ◽  
Vol 47 (4) ◽  
pp. 347-364 ◽  
Author(s):  
MS Islam ◽  
MA Rouf

A review of the production of activated carbons from waste biomass has been presented. The effects of various process parameters on the pyrolysis stage have been reviewed. Influences of activating conditions, physical and chemical, on the active carbon properties have been discussed. Under certain process conditions several active carbons with BET surface areas, ranging between 250 and 2410 m2/g and pore volumes of 0.022 and 91.4 cm3/g, have been produced. A comparison in characteristics and uses of activated carbons from waste biomass with those of commercial carbons has been made. Waste biomass being highly efficient, low cost and renewable sources of activated carbon production. Bangladesh J. Sci. Ind. Res. 47(4), 347-364, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.14064


2013 ◽  
Vol 634-638 ◽  
pp. 1026-1030 ◽  
Author(s):  
Huan Chun Wang ◽  
Xiao Li Gou ◽  
Xiao Meng Lv

Two kinds of modified activated carbons were prepared by dipping with Zn(NO3)2 solution and by reducing in the atmosphere of N2 at high temperature respectively, which were characterized by FTIR,DSC,SEM and EDS. The surface structure was strongly changed in the process, along with the changes of chemical functional groups. The results of adsorption experiments revealed that the adsorbent capacities of UDMH gas at room temperature were enhanced obviously by modification compared with the raw activated carbon, especially dipped by transition metal solution. The mechanism probably involved was also discussed.


2014 ◽  
Vol 955-959 ◽  
pp. 2169-2172 ◽  
Author(s):  
Bing Li ◽  
Jian Ming Xue ◽  
Yue Yang Xu ◽  
Hong Liang Wang ◽  
Chun Yuan Ma ◽  
...  

Five kinds of powder activatedcarbons were studied to investigate the removal of SO2 from flue gasin a fixed bed reactor. The fractal dimension of activated carbon was determined by N2 adsorption isothermat 77Kand SO2 adsorptioncapacity was correlated with thefractal dimension. The results show thatthe activated carbons prepared from different precursors by differentactivation methods have different fractal dimension. Big differences in SO2 adsorption capacity are found between fivekinds of activated carbons. SO2 adsorption capacity increases with the fractaldimension increasing. The results indicate that the fractal dimension could be used as a indicator of SO2removal capacity on powder activated carbon.


Sign in / Sign up

Export Citation Format

Share Document