Effect of Xylanase-Aided Refining on Wet-End Chemistry and Bleachability of Masson Thermomechanical Pulp

2013 ◽  
Vol 781-784 ◽  
pp. 2667-2671
Author(s):  
Qing Xian Miao ◽  
Liu Lian Huang ◽  
Li Hui Chen

The Masson thermomechanical pulp (TMP) which was obtained from the first stage refiner was pretreated with xylanase followed by refining with PFI refiner. The impact of enzymatic refining on wet-end chemistry and bleachability of pulp were studied. The results showed that the enzymatic pretreatment could improve the wet-end chemistry properties and enhance the bleachability of masson TMP. In contrast to the control pulp sample, the beating degree, the zeta potential, the dissolved charge, the filler retention, and the sizing degree was increased respectively by 18.8%, 17.5%, 10%, 19.6%, and 18.8% at the xylanase dosage of 0.3 AXU/g (o.d. pulp); the tensile index, the tearing index and the brightness was increased by 2.3 N·m2/g, 0.19 mN·m2/g, and 1.3%ISO, respectively.

TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 15-21 ◽  
Author(s):  
JI-YOUNG LEE ◽  
CHUL-HWAN KIM ◽  
JEONG-MIN SEO ◽  
HO-KYUNG CHUNG ◽  
KYUNG-KIL BACK ◽  
...  

Eco-friendly cushioning materials were made with thermomechanical pulps (TMPs) from waste woods collected from local mountains in Korea, using a suction-forming method without physical pressing. The TMP cushions had superior shock-absorbing performance, with lower elastic moduli than expanded polystyrene (EPS) or molded pulp. Even though the TMP cushions made using various suction times had many voids in their inner fiber structure, their apparent densities were a little higher than that of EPS and much lower than that of molded pulp. The addition of cationic starch contributed to an increase in the elastic modulus of the TMP cushions without increasing the apparent density, an effect which was different from that of surface sizing with starch. In the impact test, the TMP cushions showed a more ductile pattern than the brittle EPS. The porosity of the TMP cushion was a little less than that of EPS and much greater than that of molded pulp. The porous structure of the TMP cushions contributed to their excellent thermal insulating capacity, which was equivalent to that of EPS. In summary, the TMP packing cushions showed great potential for surviving external impacts during product distribution.


Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Javed Alam ◽  
Arun Kumar Shukla ◽  
Mohammad Azam Ansari ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Mansour Alhoshan

We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (BR) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The BR values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.


2004 ◽  
Vol 50 (3) ◽  
pp. 183-194 ◽  
Author(s):  
S.C. Stratton ◽  
P.L. Gleadow ◽  
A.P. Johnson

The impact of effluent discharges continues to be an important issue for the pulp manufacturing industry. Considerable progress has been made in pollution prevention to minimize waste generation, so-called manufacturing “process closure.” Since the mid-1980s many important technologies have been developed and implemented, many of these in response to organochlorine concerns. Zero effluent operation is now a reality for a few bleached chemi-thermomechanical pulp (BCTMP) pulp mills. In kraft pulp manufacturing, important developments include widespread adoption of new cooking techniques, oxygen delignification, closed screening, improved process control, new bleaching methods, and systems that minimize pulping liquor losses. Coupled to this is a commitment to reduce water use and maximize reuse of in-mill process streams. Some companies pursued bleach plant closure, and many have been successful in eliminating a portion of their bleaching wastewaters. However, the difficulties inherent in closing bleach plants are considerable. For many mills the optimal solution has been found to be a high degree of closure coupled with external biological treatment of the remaining process effluent. No bleach plants at papergrade bleached kraft mills are known to be operating effluent-free on a continuous basis. This paper reviews the important worldwide technological developments and mill experiences in the 1990s that were focused on minimizing environmental impacts of pulp manufacturing operations.


2012 ◽  
Vol 602-604 ◽  
pp. 2267-2272
Author(s):  
Shu Lei Zhao ◽  
Zheng Yuan Wei ◽  
Xiao Tian Ding ◽  
Qiang Lin

This paper experimentally examined the impact of four different drying methods (free drying, press drying, vacuum drying and impingement drying) on paper physical properties including roughness, elongation, air permeance, tearing resistance, tensile index and bursting strength. The handsheets materials are HWBKP (Hardwood Bleached Chemical Pulp), SWBKP (Softwood Bleached Chemical Pulp), CTMP (Chemical Thermo mechanical Pulp) and ATMP (Advanced Thermo Mechanical Pulp). Good experimental data were obtained for the four pulps under different drying conditions. The results of our investigation indicate that press drying have lower surface roughness, elongation and air permeance but higher tearing resistance; the vacuum drying have higher roughness, tensile index and bursting strength; the impingement drying have lower tearing resistance, tensile index and bursting strength but higher elongation and air permeance. Selection of different drying conditions for effective productivity and quality improvement potential is proposed as a direction for the future dryer design.


2018 ◽  
Vol 33 (1) ◽  
pp. 69-81
Author(s):  
Rita Ferritsius ◽  
Olof Ferritsius ◽  
Jan Hill ◽  
Anders Karlström ◽  
Karin Eriksson

Abstract The study explores how changes in process variables, residence time and pulp consistency in refining influence the pulp properties. The equipment utilized in this study was a conical disc chip refiner (RGP82CD) producing thermomechanical pulp (TMP). The focus was on the ratio between tensile index and specific energy consumption. Pulp properties were measured for composite pulp samples taken from the refiner blow line. Residence times and pulp consistencies were estimated by use of the extended entropy model. This showed that the CD-refiner, with the flat and conical refining zone, has a process performance similar to that of a two-stage refiner set-up, and that the consistency in both refining zones is of high importance. Comparing different periods revealed that even if the values of measured blow line consistency are similar, significant differences in the estimated consistency in the flat zone can prevail. Therefore, only monitoring blow line consistency is not enough. Specifically, it was found that the pulp consistency after the flat zone could be very high, considerably higher than in the blow line, and this could have negative effects on tensile index and fibre length.


2014 ◽  
Vol 12 (6) ◽  
pp. 1157-1173 ◽  
Author(s):  
Agnieszka Maria Jastrzębska ◽  
Patrycja Kurtycz ◽  
Andrzej Olszyna ◽  
Ewa Karwowska ◽  
Ewa Miaśkiewicz-Pęska ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 180
Author(s):  
Jan Vinogradov ◽  
Miftah Hidayat ◽  
Yogendra Kumar ◽  
David Healy ◽  
Jean-Christophe Comte

Despite the broad range of interest and possible applications, the controls on the electric surface charge and the zeta potential of gneiss at conditions relevant to naturally fractured systems remain unreported. There are no published zeta potential measurements conducted in such systems at equilibrium, hence, the effects of composition, concentration and pressure remain unknown. This study reports zeta potential values for the first time measured in a fractured Lewisian gneiss sample saturated with NaCl solutions of various concentrations, artificial seawater and artificial groundwater solutions under equilibrium conditions at confining pressures of 4 MPa and 7 MPa. The constituent minerals of the sample were identified using X-ray diffraction and linked to the concentration and composition dependence of the zeta potential. The results reported in this study demonstrate that the zeta potential remained negative for all tested solutions and concentrations. However, the values of the zeta potential of our Lewisian gneiss sample were found to be unique and dissimilar to pure minerals such as quartz, calcite, mica or feldspar. Moreover, the measured zeta potentials were smaller in magnitude in the experiments with artificial complex solutions compared with those measured with NaCl, thus suggesting that divalent ions (Ca2+, Mg2+ and SO42−) acted as potential determining ions. The zeta potential was also found to be independent of salinity in the NaCl experiments, which is unusual for most reported data. We also investigated the impact of fracture aperture on the electrokinetic response and found that surface electrical conductivity remained negligibly small across the range of the tested confining pressures. Our novel results are an essential first step for interpreting field self-potential (SP) signals and facilitate a way forward for characterization of water flow through fractured basement aquifers.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 559 ◽  
Author(s):  
Maciej Stawny ◽  
Aleksandra Gostyńska ◽  
Katarzyna Dettlaff ◽  
Anna Jelińska ◽  
Eliza Główka ◽  
...  

Background: Ampicillin (AMP) is frequently administered parenterally in critically ill patients with meningitis or endocarditis. Many of them require parallel infusion of total parenteral nutrition (TPN) admixtures. The aim of the study was to determine the physicochemical stability of AMP in TPN admixtures. Methods: AMP was added to two formulations of TPN admixtures differing in the lipid emulsion (Lipofundin® MCT/LCT 20% or LIPIDem®). Samples were stored at 4 ± 1 °C with light protection, and at 25 ± 1 °C with and without light protection to assess the impact of temperature and light on formulation stability. Every 24 h the pH, zeta potential, mean droplet diameter (MDD) of a lipid emulsion, and AMP concentration using HPLC method were determined. The assessment of stability and compatibility of TPN admixtures with vitamins and trace elements was carried out immediately after preparation and after 24 h of storage. Results: The addition of AMP as well as vitamins and trace elements to the TPN admixtures did not affect their physical stability. An increase in the pH value of approx. 0.6 and reduction of zeta potential were observed. The MDD of the lipid emulsions was below the limit of 500 nm (dynamic light scattering (DLS) method) and no fat droplets greater than 525 nm were observed (light diffraction (LD) method). The content of AMP after the first 24 h was within the acceptable limit of 90% for TPN admixtures stored at 4 ± 1 °C and 25 ± 1 °C with light protection. Conclusions: The results showed that co-administration of AMP in the same bag with TPN admixture at the tested dose is possible when used ex tempore and with light protection.


2012 ◽  
Vol 27 (2) ◽  
pp. 202-207 ◽  
Author(s):  
Karin Athley ◽  
Lars Granlöf ◽  
Daniel Söderberg ◽  
Mikael Ankerfors ◽  
Göran Ström

Abstract An investigation of the impact of particle size on the mechanical retention of particles in a fibre network has been conducted. The particles used were five sets of quartz particle fractions having fairly narrow particle size distributions with average particle size ranging from a few μm to around 100 μm. The particles were used to model flocculated filler aggregates as part of a larger study of the effect of pre-flocculation on mechanical retention. Pre-flocculation of the filler is a possible strategy to increase the filler content of paper without deterioration of strength properties. A modified laboratory hand sheet former, known as the Rapid Drainage Device (RDD) was used. The major modification consisted of a long pipe that acted as a suction leg, which provides a dewatering vacuum at the same level as on a paper machine. The experimental results showed that mechanical filler retention increased linearly with particle size and grammage of the fibre layer above a critical grammage which depended on particle size. The linear relation was also seen in a pilot scale trial on the FEX pilot-paper machine at Innventia. During this trial fine paper was produced using pre-flocculated filler where the mean particle size of the flocs and fibres was measured in the flow to the headbox. The results from this pilot trial show that mechanical retention is an important part of the total filler retention. Drainage time and therefore drainage resistance increased with the grammage of the fibre layer and amount of quartz particle added. Drainage time, compared at total grammage (i.e. the sum of fibre and quartz particle grammage) was lowest for a fraction of medium-sized particles, with a median size of 35 mm. There was no obvious effect on retention or drainage resistance of a change in the dewatering pressure from 27.5 to 41.5 kPa.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 734
Author(s):  
Miriam Granados-Vallejo ◽  
Hugo Espinosa-Andrews ◽  
Guadalupe M. Guatemala-Morales ◽  
Hugo Esquivel-Solis ◽  
Enrique Arriola-Guevara

In the search for oils of commercial interest that serve as new sources for the generation of cosmetic, pharmaceutical, or nutraceutical products, the green coffee beans oil (Coffea arabica L.) was studied. This research aimed to evaluate the oxidative stability of microencapsulated green coffee oil (Coffea arabica) by spray drying. The green coffee oil emulsions were produced by microfluidization using mesquite gum and octenyl succinic anhydride modified starches (OSA-starch) as wall-material. The particle size, polydispersity, and zeta potential on the microfluidized emulsions were optimized. The results showed that microfluidization had positive effects on the reduction of the emulsion droplets and the zeta potential, developing stable emulsions for both polymers. Then, the optimal microfluidization conditions were used to evaluate the impact of the spray drying conditions on the microencapsulation efficiency, morphology, and oxidation stability of the green coffee oil microcapsules under accelerated storage conditions (32% relative humidity (RH) at 25 °C). The microencapsulation efficiency was approximately 98% for both wall-materials. The morphology of the microcapsules showed spherical shapes and polydisperse sizes, a typical characteristic of spray-dried powders. The oxidative stability of the microcapsules was lower than the bulk green coffee oil (87.39 meq of O2/kg of oil), reaching values of 60.83 meq of O2/kg of oil for mesquite gum and 70.67 meq of O2/kg of oil for OSA-starch. The microcapsules produced have good potential for the development of nutraceutical foods or cosmetic formulations with adequate stability.


Sign in / Sign up

Export Citation Format

Share Document