The Effect of Heat Treating on the Microstructure and Mechanical Properties of Cr-Cu-N Nanocomposite Thin Films

2009 ◽  
Vol 79-82 ◽  
pp. 573-576 ◽  
Author(s):  
Jyh Wei Lee ◽  
Zhi Fan Zeng ◽  
Chaur Jeng Wang

The Cr-Cu-N nanocomposite thin films with copper contents ranging from 1.6 to 24.1 at.% were deposited on silicon wafer substrates using a bipolar asymmetry pulsed DC reactive magnetron sputtering system. A dense and compact structure was observed for the thin film containing higher than 10.2 at.% Cu, whereas columnar structures were revealed on the coatings with less than 10.2 at.% Cu. Heat treatments of the as-deposited thin films were held in a vacuum tube furnace at 400, 450 and 500oC for 30 minutes, respectively. It was observed that the copper atoms would diffuse to the surface to form oxide particles on the coating contained higher Cu content after heating higher than 450oC. The quantity and size of the oxide particles increased with increasing heating temperature and Cu content in the thin film. The hardness of coatings increased after heating except #D thin film containing 24.1 at.% Cu, which the softening effect was found after heating at 500oC. A granular and less dense cross-sectional morphology was observed on #D coating after heat treating at 500oC, which was responsible for the lower hardness of thin film.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1802
Author(s):  
Dan Liu ◽  
Peng Shi ◽  
Yantao Liu ◽  
Yijun Zhang ◽  
Bian Tian ◽  
...  

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39859-39868 ◽  
Author(s):  
Shaofeng Shao ◽  
Yunyun Chen ◽  
Shenbei Huang ◽  
Fan Jiang ◽  
Yunfei Wang ◽  
...  

Pt/GQDs/TiO2 nanocomposite thin film-based gas sensors show tunable VOC sensing behaviour at room temperature under visible-light activation.


2018 ◽  
Vol 6 (37) ◽  
pp. 9981-9989 ◽  
Author(s):  
Nikhil Nikhil ◽  
Rajiv K. Pandey ◽  
Praveen Kumar Sahu ◽  
Manish Kumar Singh ◽  
Rajiv Prakash

Successful practical application of a polymer or its nanocomposite depends on the ability to produce a high performance electronic device at a significantly lesser cost and time than those needed to manufacture conventional devices.


2016 ◽  
Vol 78 (5-10) ◽  
Author(s):  
S. Malik ◽  
Fatin Hana Naning ◽  
Azyuni Aziz

Various techniques have been used to prepare polymer nanocomposite thin films that involve tedious work and consume considerable amount of materials and time. In this study, nanocomposite thin films of poly (3-hexylthiophene -2, 5-diyl) (P3HT), stearic acid and CdSe nanoparticles were fabricated by a stamping method which is a modification of Langmuir Schaefer technique. The CdSe nanoparticles were then grown in-situ between subsequent layers of thin film by gas exposure technique. Their surface-pressure (-A) isotherms and morphology were investigated. The surface-pressure isotherms revealed that, impurities in water subphase affect the profile of Langmuir monolayer. Stearic acid was found to be more dominant as compared to P3HT. The modified Langmuir Schaefer technique produced fairly smooth, large area nanocomposite thin films as shown by the AFM images. A prominent advantage of this procedure is that it requires only small amount of materials.


1996 ◽  
Vol 11 (12) ◽  
pp. 2951-2954 ◽  
Author(s):  
J. G. Wen ◽  
S. Mahajan ◽  
H. Ohtsuka ◽  
T. Morishita ◽  
N. Koshizuka

Highly in-plane aligned α-axis YBa2Cu3O7−x thin films deposited on (100) LaSrGaO4 substrates by a self-template method were studied by high-resolution electron microscopy along three orthogonal 〈100〉 axes of the substrate. Plan-view images confirm that the majority of the film preferentially aligns across the entire substrate except for very few misaligned domains with average size 10 nm2. Cross-sectional images along the [100] orientation of YBa2Cu3O7−x reveal that in-plane aligned α-axis YBa2Cu3O7−x is grown on a template layer dominated by c-axis oriented film. This strongly suggests that the in-plane alignment of α-axis YBa2Cu3O7−x thin films on (100) LaSrGaO4 substrates is governed by the different stresses along the b and c axes of the substrate. Cross-sectional images along [001] of the YBa2Cu3O7—x thin film reveal that the 90° domains easily nucleate in the region between α-axis YBa2Cu3O7—x and the YBa4Cu3Ox phase. Cracks along the (001) plane of YBa2Cu3O7−x are found to be due to the large mismatch between the c parameters of the thin film and substrate.


2012 ◽  
Vol 576 ◽  
pp. 417-420 ◽  
Author(s):  
N.N. Hafizah ◽  
Ismail Lyly Nyl ◽  
M.Z. Musa ◽  
Mohamad Rusop Mahmood

In this study, PMMA/TiO2 nanocomposite thin films were prepared by using sonication spin coating technique. The PMMA and TiO2 solution were mixed together and sonicated for 1h to confirm the homogeneity of the sample. The thin films obtained were then measured using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). FESEM micrograph reveals that the uniformity increases with the increase of TiO2 weight percentage.


2007 ◽  
Vol 22 (7) ◽  
pp. 1872-1878 ◽  
Author(s):  
Xiaoling He ◽  
Song Xu ◽  
Andrey V. Sklyarov ◽  
Steven Hardcastle

We report on the synthesis and surface characterization of thin-film nanocomposites using functionalized single-walled carbon nanotubes (CNTs) with a diamine-terminated oligomeric poly(ethylene glycol) [poly(ethylene glycol) bis (3-aminopropyl)-terminated 1500]. The functionalized CNT samples are soluble in highly polar solvents. Their common solubility allows for the intimate mixing of the functionalized nanotubes with the matrix polymer–poly(vinyl alcohol) by dip coating and wet casting to form nanocomposite thin films. We demonstrate the alignment of the CNT bundles in the thin films that are formed without the external field forces. We present our results and discuss alignment reorientations from the characterizations of the nanocomposite thin films by using a Raman spectrometer, scanning electron microscopy, and atomic force microscopy.


2007 ◽  
Vol 561-565 ◽  
pp. 2005-2008
Author(s):  
X.Y. Zhou ◽  
Hai Rong Wang ◽  
Zhuang De Jiang ◽  
Rui Xia Yu

A simple method to extract the intrinsic mechanical properties of the soft metallic thin films on hard substrates by nanoindenation is presented. Utilizing the geometry relationship of residual impressions obtained by the SEM image and the cross-sectional profile, the pile up error in elastic modulus determination of soft thin films by the Oliver and Pharr analysis is first corrected. Knowledge of the ‘true’ elastic modulus, the ‘true’ hardness of thin film is then extracted from the measured contact stiffness data for an elastically homogeneous film-substrate system. The present method is applied for a 504 nm Au thin film sputter deposited on the glass substrate and the results show that the ‘true’ elastic modulus and hardness of Au film are 80 GPa and 1.3 GPa, which are in agreement well with the literatures.


2015 ◽  
Vol 1134 ◽  
pp. 6-11 ◽  
Author(s):  
Mohamad Hafiz Mohd Wahid ◽  
Rozana Mohd Dahan ◽  
Siti Zaleha Sa'ad ◽  
Adillah Nurashikin Arshad ◽  
Muhamad Naiman Sarip ◽  
...  

The enhancement of ferroelectric and dielectric properties of PVDF-TrFE by incorporating various percentages of Magnesium Oxide (1 – 7%) for spin coated nanocomposite thin film was demonstrated. Observations showed uniform distribution and low agglomeration of MgO in the PVDF-TrFE nanocomposite thin film, especially for 3% MgO. Additionally, the 3% MgO incorporated into PVDF-TrFE had generated the highest Pr (88 mC/m2) and dielectric constant (13.6) in comparison other percentage compositions. However, the addition of more than 3% MgO filler loading caused a reduction in the ferroelectric and dielectric properties of the nanocomposite thin films.


2009 ◽  
Vol 19 (24) ◽  
pp. 3868-3873 ◽  
Author(s):  
Jongsik Yoon ◽  
Sungmee Cho ◽  
Jung-Hyun Kim ◽  
JoonHwan Lee ◽  
Zhenxing Bi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document