Comparison of Bearing Capacity of H-Shaped Members with Corrugated Web of Different Wave Forms

2013 ◽  
Vol 831 ◽  
pp. 181-185
Author(s):  
Li Li Wu ◽  
Kai Feng Guo ◽  
Bi De Li ◽  
Xiao Lin Fu ◽  
Zhen Jin Su ◽  
...  

In this paper, according to the method of keeping wavelength the same, while the amplitude and unfolding length approximately equivalent, trapezoidal wave is transformed into sine wave. On this base,the bearing capacity under axial compression, pure bending, shear of corrugated web member of two kinds of wave forms converted respectively are compared. Results show that under the same loading condition, stress distribution of the two kinds of corrugated web member section is basically the same. By using different waveform conversion method presented in this paper, the equivalent conversion between different corrugated web member can be easily realized.

2018 ◽  
Vol 9 (1) ◽  
pp. 24 ◽  
Author(s):  
Jingzhou Xin ◽  
Jianting Zhou ◽  
Fengbin Zhou ◽  
Simon Yang ◽  
Yi Zhou

With an extension in service years, bridges inevitably suffer from performance deterioration. Columns are the main components of bridge structures, which support the superstructure. The damage of pier columns is often more harmful to bridges than that of other components. To accurately evaluate the time-varying characteristics of corroded columns, this paper proposes a new model for the bearing capacity evaluation of deteriorated reinforced concrete (RC) eccentric compression columns based on the Hermite interpolation and Fourier function. Firstly, the axial compression point, the pure bending point and the balanced failure point were selected as the basic points, and the deteriorated strength of these basic points was calculated by considering factors such as concrete cracking, reduction of reinforcement area, buckling of the steel bar, bond slip and strength reduction of confined concrete. After that, the interpolation points were generated by a piecewise cubic Hermite interpolating polynomial, and the explicit expression of the interpolation points fitting function was realized by the trigonometric Fourier series model. Finally, comparison studies based on measured data from forty-five corroded RC eccentric compression columns were conducted to investigate the accuracy and efficiency of the proposed method. The results show that: (1) the prediction results for bearing capacity of corroded RC columns are in good agreement with the measured data, with the average ratio of predicted results to test results at 1.06 and the standard deviation at 0.14; (2) the proposed model unifies the three stress states of axial compression, eccentric compression and pure bending, and is consistent with the continuum mechanics characteristics; (3) the decrements of axial load carrying capacity for 10% and 50% of the corrosion rate are 31.4% and 45.2%, while in flexure they are 25.4% and 77.4%, respectively; and (4) the test data of small-scale specimens may overestimate the negative effect of corrosion on the bearing capacity of actual structures. The findings in this paper could lay a solid starting point for structural life prediction technologies based on nondestructive testing.


2012 ◽  
Vol 204-208 ◽  
pp. 1066-1069
Author(s):  
Yan Jun Li ◽  
Ping Liu

Four specially shaped columns with HRB500 reinforcement were tested under low cyclic loading. The hysteretic curve, yield load, ultimate load, displacement ductility and rigidity degradation were compared in order to research the effect of axial compression ratio on ductility and bearing capacity of specially shaped column with HRB500 reinforcement. It is shown that the axial compression ratio has greater influence on ductility and bearing capacity. With the increase of axial compression ratio, the bearing capacity of HRB500 reinforcement concrete specially shaped column can be enhanced while the deformation capacity becomes worse. The hysteretic characteristic of specially shaped columns with HRB500 reinforcement is improved and the stiffness degeneration becomes slow with the decrease of axial compression ratio.


2014 ◽  
Vol 1079-1080 ◽  
pp. 177-182
Author(s):  
Shao Wu Zhang ◽  
Ying Chuan Chen ◽  
Geng Biao Zhang

In order to study the performance of concrete frame columns that reinforcedby assembleinclined web steel truss, with the same reciprocatinghorizontal displacement and different axialcompression.It canbe calculate the mechanical behavior of concrete frame columns and reinforced columns by using the finite element analysis software ABAQUS. Simulation analysis shows that the bearing capacity ofreinforced columnshas greatly increased andpresented a full hysteresis curve. The result shows that the reinforcement method of assemble inclined web steel truss can greatly improve the bearing capacity and ductility of the concrete frame column, and the axial compression is larger, the better the reinforcement effect.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4267
Author(s):  
Qi Ye ◽  
Yingchun Gong ◽  
Haiqing Ren ◽  
Cheng Guan ◽  
Guofang Wu ◽  
...  

Cross-laminated timber (CLT) elements are becoming increasingly popular in multi-storey timber-based structures, which have long been built in many different countries. Various challenges are connected with constructions of this type. One such challenge is that of stabilizing the structure against vertical loads. However, the calculations of the stability bearing capacity of the CLT members in axial compression in the structural design remains unsolved in China. This study aims to determine the stability bearing capacity of the CLT members in axial compression and to propose the calculation method of the stability coefficient. First, the stability coefficient calculation theories in different national standards were analyzed, and then the stability bearing capacity of CLT elements with four slenderness ratios was investigated. Finally, based on the stability coefficient calculation formulae in the GB 50005-2017 standard and the regression method, the calculation method of the stability coefficient for CLT elements was proposed, and the values of the material parameters were determined. The result shows that the average deviation between fitting curve and calculated results of European and American standard is 5.43% and 3.73%, respectively, and the average deviation between the fitting curve and the actual test results was 8.15%. The stability coefficients calculation formulae could be used to predict the stability coefficients of CLT specimens with different slenderness ratios well.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dafu Cao ◽  
Jiaqi Liu ◽  
Wenjie Ge ◽  
Rui Qian

In order to study the influence of the axial compression ratio and steel ratio on the shear-carrying capacity of steel-truss-reinforced beam-column joints, five shear failure interior joint specimens were designed. The effect of different coaxial pressure ratios (0.1, 0.2, and 0.3) and steel contents on the strain, ultimate bearing capacity, seismic performance, and failure pattern of cross-inclined ventral and chord bars in the joint core area was investigated. The experimental results show that the load-displacement hysteretic curves of all test specimens exhibit a bond-slip phenomenon. With the increase of the axial compression ratio, the ultimate bearing capacity of the joint core increases by 3.4% and 5.9%, respectively. While the ductility decreases by 10.3% and 13.1%, and the energy consumption capacity decreases by 3.2% and 5.8%, respectively. The shear capacity and ductility of the member with cross diagonal ventral steel angle in the joint core are increased by 12.9% and 13.4%, respectively. The shear capacity and ductility of the joint can be significantly improved by increasing the amount of steel in the core area. The expression of shear capacity suitable for this type of joint is obtained by fitting analysis, which can be used as a reference for engineering design.


2011 ◽  
Vol 368-373 ◽  
pp. 248-252
Author(s):  
Bao Sheng Yang ◽  
Yun Yun Li

The influence on columns behaviors of slenderness ratio are analyzed, and the influence on columns’ anti-seismic behavior of axial compression ratio, stirrup ratio and steel form are analyzed through the test on bearing capacity and level load of low cycle reverse of steel reinforced high-strength concrete columns. The bearing capacity of the long columns reduces along with the slenderness ratio increasing and augments along with concrete strength increasing. Probability of suddenly destruct increases along with the column slenderness ratio augmenting through the test. In addition, anti-seismic behavior of columns are effected not only axial compression ratio, but also steel form. Axial compression coefficien of the steel reinforced high-strength concrete columns with different steel form may be adjusted, however, the influence of stirrup ratio is very little on anti-seismic behavior of columns.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Hua Huang ◽  
Kailin Xi ◽  
Yu Zhang ◽  
Jinghui Shi ◽  
Boquan Liu

The load carrying capacity and failure mechanism of 8 square columns strengthened with high-performance ferrocement laminate (HPFL) and bonded steel plates (BSP) were analyzed on the basis of experiments on the axial compression performance of these columns. Results show that the reinforcing layer worked together with the original columns as a whole, and the load-bearing capacity significantly increased. When failure of the strengthened column occurred, the mortar and concrete were crushed and bulged outward in the middle of the columns, the angle bars and longitudinal steel bars buckled, and some stirrups were pulled out. The chamfering of angle bar momentously affected the primary damage of steel strand. The values of the strength reduction factor and pressure effective utilization coefficient of the mortar were suggested. Based on the experiments and existing tests of 35 columns strengthened with HPFL, equations for the axial compression bearing capacity were proposed and all calculation results agreed well with testing results. Therefore, the calculation method could be used in the capacity design of axial compression strengthened columns.


2022 ◽  
pp. 136943322110606
Author(s):  
Xue Li ◽  
Lian-guang Wang ◽  
Hai-yang Gao ◽  
Ni Zhang

Splicing glass fiber–reinforced polymer (GFRP)-concrete–steel double-skin tubular column (DSTC) is to set connection component at the joint of two or more separated GFRP tubes, and then pour concrete in the double-tube interlayer to form a continuous composite member. In this paper, the splicing DSTC composite members based on steel bar connection were designed and tested under axial compression to determine its mechanical performance. The main parameters include the connection steel ratio, the hollow ratio, and the thickness of GFRP tube. The results show that the GFRP tube presents apparent constraint effect on the concrete at about 60% of the ultimate load. The failure of splicing specimen occurred in the non-splicing section at a certain distance from the splice joint, and the stirrups at the splice joint provide effective constraint effect on the internal concrete. The proposed DSTC splicing method based on steel cage connection can satisfy the strength requirements of splice joint. Nevertheless, the increase of axial steel bar ratio cannot improve the bearing capacity of the splicing column, and the steel ratio of 2.44% is suggested for the splice joint of DSTCs under axial compression. The axial bearing capacity of splicing DSTCs significantly increases with the increase of GFRP tube thickness, but the amount of stirrups should be increased properly when a larger tube thickness is used. Two models were selected to calculate the bearing capacity of splicing members and it is found that Yu’s model is more accurate in predicting splicing DSTCs.


Sign in / Sign up

Export Citation Format

Share Document