CFD Study on must of Grapes Separation in a Hydrocyclone

2013 ◽  
Vol 837 ◽  
pp. 645-650
Author(s):  
Petru Cârlescu ◽  
Ioan Tenu ◽  
Marius Baetu ◽  
Radu Rosca

Abstract. Hydrocyclones are increasingly used in the food industry for various separation and purification. In this paper, an optimization was made to design a hydrocyclone model using CFD (Computational Fluid Dynamics). CFD simulation is performed with FLUENT software by coupling the Reynolds Stress Model (RSM) for must of grapes flow with Discrete Phase Model (DPM) for solid particles trajectory. Coupling of discrete phase (particles) and continuous phase (must of grapes) in the mathematical model is set so that the continuous phase to influence discrete phase. Tracking particles traiectory in this hydrocyclone allows advanced degree is separation so obtained to the maximum particle size approaching the size of a yeast cell 10 μm, without separating them. Hydrocyclone dimensional designed simulation was performed and analyzed on an experimental pilot plant for three different must flow rates supply. Introduced particle flow rates simulation and experiment does not exceed 10% of the must flow rates. The degree of separation obtained is in agreement with experimental data.

Author(s):  
Javad Nemati ◽  
Babak Beheshti ◽  
Ali Mohammad Borghei

This study numerically modeled the flow of a fluid (air) and solid particles (saffron flower) inside a cyclone using the finite volume method (FVM) in ANSYS Fluent. The continuous phase was simulated under steady state conditions, as the initial condition, using the Reynolds Stress Model (RSM) for turbulence at three constant inlet air velocities of 1.5 m/s, 2.5 m/s, and 3.5 m/s over the inlet section. One-way coupling was assumed to govern all numerical analyses. The fluid phase and particles were treated as the continuous medium (within a Eulerian framework) and discrete phase (within a Lagrangian framework), respectively. The equations governing the gas phase included the compressible Navier–Stokes and the conservation of mass. The discrete phase equations included the equations of motion for three different particles including petals, stigmas, and anthers. According to the numerical results, the cyclone separation efficiency was calculated, and the static pressure and velocity contours were plotted. The results showed the capability of the CFD-based simulation for an accurate demonstration of the behavior of the fluid–solid phase. Accordingly, it can be used to predict the efficiency of stigma separation from petals of saffron using airflow in the cyclone. According to the results, the highest cyclonic separation efficiency of 89% was achieved at an inlet air velocity of 3.5 m/s, which was very close to the experimental data.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Chang Liu ◽  
Zuobing Chen ◽  
Weili Zhang ◽  
Chenggang Yang ◽  
Ya Mao ◽  
...  

The vertical roller mill is an important crushing and grading screening device widely used in many industries. Its classification efficiency and the pressure difference determine the entire producing capacity and power consumption, respectively, which makes them the two key indicators describing the mill performance. Based on the DPM (Discrete Phase Model) and continuous phase coupling model, the flow field characteristics in the vertical roller mill including the velocity and pressure fields and the discrete phase distributions had been analyzed. The influence of blade parameters like the shape, number, and rotating speed on the flow field and classification performance had also been comprehensively explored. The numerical simulations showed that there are vortices in many zones in the mill and the blades are of great significance to the mill performance. The blade IV not only results in high classification efficiency but also reduces effectively the pressure difference in the separator and also the whole machine. The conclusions of the flow field analysis and the blade effects on the classification efficiency and the pressure difference could guide designing and optimizing the equipment structure and the milling process, which is of great importance to obtain better overall performance of the vertical roller mill.


Author(s):  
Yasmin Khakpour ◽  
Herek L. Clack

Particulate sampling in the flue gas at the Electrostatic Precipitator (ESP) outlet during injection of powdered activated carbons (PACs) has provided strong anecdotal evidence indicating that injected PACs can penetrate the ESP in significant concentrations. The low resistivity of PAC is consistent with poor collection efficiency in an ESP and lab-scale testing has revealed significantly different collection behavior of PAC in an ESP as compared to fly ash. The present study illustrates the use of a commercial CFD package — FLUENT — to investigate precipitation of powdered activated carbon (PAC) in the presence and absence of electric field. The computational domain is designed to represent a 2-D wire-plate ESP channel. The governing equations include those covering continuous phase transport, electric potential, air ionization, and particle charging. The particles are tracked using a Lagrangian Discrete Phase Model (DPM). In addition, a custom user-defined function (UDF) uses a deforming boundary condition and a prescribed critical particle velocity to account for particle deposition and dust-cake growth on the electrodes. The effect of Electrohydrodynamics (EHD) induced flow on the ESP collection efficiency under various flow and particle characteristics as well as different ESP configurations are illustrated.


2012 ◽  
Vol 505 ◽  
pp. 170-174
Author(s):  
Wei Dong Shi ◽  
Liang Zhang ◽  
Hai Yan He ◽  
Jiang Hai Liu ◽  
Liang Chen

In this paper, a swirl nozzle is established to disperse superfine powder aerodynamically. And Reynolds stress model (RSM) is adopted to simulate the strongly swirling, compressible and transonic gas flow in the nozzle and its rear. Combined with discrete phase model (DPM), the concentration distribution of particle group in size of 2.5μm is studied. The simulated results show that, the distribution of swirl strength is determined basically by the nozzle structure, while the total pressure has little effect on it; compared with an irrotational nozzle, the swirl nozzle could achieve a better dispersing effect for superfine powder.


Author(s):  
Kaushik Das ◽  
Debashis Basu ◽  
Todd Mintz

The present study makes a comparative assessment of different turbulence models in simulating the flow-assisted corrosion (FAC) process for pipes with noncircular cross sections and bends, features regularly encountered in heat exchangers and other pipeline networks. The case study investigates material damage due to corrosion caused by dissolved oxygen (O2) in a stainless steel pipe carrying an aqueous solution. A discrete solid phase is also present in the solution, but the transport of the solid particles is not explicitly modeled. It is assumed that the volume fraction of the solid phase is low, so it does not affect the continuous phase. Traditional two-equation models are compared, such as isotropic eddy viscosity, standard k-ε and k-ω models, shear stress transport (SST) k-ω models, and the anisotropic Reynolds Stress Model (RSM). Computed axial and radial velocities, and turbulent kinetic energy profiles predicted by the turbulence models are compared with available experimental data. Results show that all the turbulence models provide comparable results, though the RSM model provided better predictions in certain locations. The convective and diffusive motion of dissolved O2 is calculated by solving the species transport equations. The study assumes that solid particle impingement on the pipe wall will completely remove the protective film formed by corrosion products. It is also assumed that the rate of corrosion is controlled by diffusion of O2 through the mass transfer boundary layer. Based on these assumptions, corrosion rate is calculated at the internal pipe walls. Results indicate that the predicted O2 corrosion rate along the walls varies for different turbulence models but show the same general trend and pattern.


2018 ◽  
Vol 8 (8) ◽  
pp. 1367 ◽  
Author(s):  
Wanting Zhou ◽  
Yue Jiang ◽  
Shi Liu ◽  
Qing Zhao ◽  
Teng Long ◽  
...  

Multiphase flow in annular channels is complex, particularly in the region where the flow direction abruptly changes between the inner pipe and the outer pipe, as the cases in horizontal drilling and pneumatic conveying. Simplified models and experience are still the main sources of information. First, to understand the process more deeply, Computational Fluid Dynamics (CFD) package Fluent is used to simulate the gas-solid flow in the horizontal and the inclined section of an annular pipe. Discrete Phase Model (DPM) is adopted to calculate the trajectories of solid particles of different sizes at different air velocities. Also, the Two-Fluid model is used to simulate the sand flow in the inclined section for the case of air flow stoppage, for which an experiment is also conducted to verify the CFD simulation. Simulation results reveal the behaviour of the solid particles showing the dispersed spatial distribution of small particles near the entrance. On the other hand, larger particles manifest a distinct sedimented flow pattern along the bottom of the pipe. The density distribution of the particles over a pipe cross section is demonstrated at a variety of air velocities. The results also show that the large airspeed tends to generate swirls near the outlet of the inner pipe. In addition, Electrical Capacitance Tomography (ECT) technology is used to reconstruct the spatial distribution of particles, and the cross-correlation algorithm to detect velocity. Both the distribution and the velocity measurement by electric sensors agree reasonably well with the CFD predictions. The details revealed by CFD simulation and the mutual-verification between CFD simulation and the ECT method of this study could be valuable for the industry in drilling process control and equipment development.


Author(s):  
Mikhail P. Strongin

The mixing process is very common in many industrial applications. In some cases, two or more liquids or discrete phase (DP) set on the pump inlet. Liquid mixture is often occurred in sanitation and agriculture applications and mixture of water with DP (such as sand) are met in the case of water transportation from natural sources (rivers, wells, etc.). DP distribution in the centrifugal pump is the subject of this study. Full pump geometry is considered, due to unsymmetrical nature of volute of the pump. Turbulence k-ε closure model and Lagrangian discrete phase model has been used for most simulations. It was found that smaller particles trap inside the pump for longer time than larger ones. The distribution of the bigger diameter particles on the outlet is more asymmetrical in comparison with particles of smaller diameter. Relatively large areas with very small particle concentrations can be observed. Particle distribution on the outlet for lighter particles demonstrates more uniformity.


2021 ◽  
Author(s):  
Mohammed Abushamleh ◽  
Ning Zhang

Abstract Computational Fluid Dynamics simulations for the droplet’s dispersion generated by a cough in an indoor background, droplets trajectory, and evaporation time are predicted to be related to the droplet’s diameter and relative humidity. In general, medium-size droplets have higher axial penetration potential, and large droplets tend to settle on the ground due to gravity. Also, larger droplets take a longer time to evaporate. Smaller droplets tend to be suspended in the flow field with small penetration potential and tend to fade faster; smaller droplets < 20 μm evaporate completely before the simulation time reaches 0.75 sec. To study the effect of Relative Humidity (RH) on the evaporation rate, in particular, the present study offers three simulations, all with the same standard room conditions, only differ in relative humidity s 40%, 60%, and 90%. Another source of variability is the cough-expired volume. This study adopts existent experimental work to establish two cough flow rate profiles. The Lagrangian discrete phase model is adopted along with the species model to track and investigate the cough droplet dispersion and evaporation.


Author(s):  
Xu Yang ◽  
Tao Zhou ◽  
Daping Lin ◽  
Xiaolu Fang ◽  
Baixu Chen ◽  
...  

In ADS reactor which choose LBE (Lead-Bismuth Eutectic) as coolant and spallation target. While SGTR (Steam Generator Tube Rupture) accident occur, water in secondary side will inject to LBE in primary coolant, and flow with LBE. The code of FLUENT will be used, steam is looked as particle, and standard k-ε model is used to predict turbulence variation of continuous phase in core. The DPM (Discrete Phase Model) will be used to track the trajectory of the particles. The distribution of steam in core will be obtained, which will verify the safety of reactor. The results show that the steam flowing across the core with LBE, might accumulate in some position and cause a surge of power. At the same time, the aggregation of steam at the channel might lead to a steam plug, and hinder the flow of the coolant in core, then core overheating might occur. Last but not least, local accumulation of water vapor may accelerate the corrosion of stainless steel material in core.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1633 ◽  
Author(s):  
Thomas Höhne ◽  
Tural Mamedov

This study aims to build a computational fluid dynamics (CFD) model that can be used to predict fluid flow pattern and to analyse the mixing process in a full-scale OD. CFD is a widely used numerical tool for analysing, modelling and simulating fluid flow patterns in wastewater treatment processes. In this study, a three-dimensional (3D) computational geometry was used, and the Eulerian-Eulerian multiphase flow model was built. Pure water was considered as the continuous phase, whereas air was modelled as the dispersed phase. The Shear Stress Transport (SST) turbulence model was specified which predicts turbulence eddies in free stream and wall-bounded region with high accuracy. The momentum source term approach and the transient rotor-stator approach were implemented for the modelling of the submersible agitators. The hydrodynamic analysis was successfully performed for four different scenarios. In order to prevent the incorrect positioning of the submerged agitators, thrust analysis was also done. The results show that the minimum required water velocity was reached to maintain the solid particles suspended in the liquid media and adequate mixing was determined.


Sign in / Sign up

Export Citation Format

Share Document