Low Band Gap Co80Ni20@RGO Nanocomposite

2013 ◽  
Vol 856 ◽  
pp. 299-303
Author(s):  
Debajyoti De ◽  
Subham Majumdar ◽  
Saurav Giri

We report a novel approach of designing ordered arrangement of disorder on the extended structures of graphene. We prepared single phase nanoparticles of Co80Ni20 alloy embedded in Reduced Graphene Oxide (RGO). Co80Ni20 shows a large moment and a soft ferromagnetic character like permalloy at room temperature. Temperature dependence of permittivity shows a behavior quite contrary to usual ceramic materials showing an increase with decreasing temperature, exhibiting a maximum. A very large magnitude of permittivity ~ 5000 is observed, which is possibly related to an interesting Maxwell-Wagner type effect arising from the charge localization in the graphene sheets. For a deeper insight of the mechanism, correlations with other phenomena are studied through magnetization, dc resistivity, I-V etc. investigations. Temperature dependent magnetization indicates toward strong ferromagnetic interaction and MH loop shows low coercivity ferromagnetic interaction at 4 K and even at room temperature.

2001 ◽  
Vol 690 ◽  
Author(s):  
Mark E. Overberg ◽  
Gerald T. Thaler ◽  
Rachel M. Frazier ◽  
Brent P. Gila ◽  
Cammy R. Abernathy ◽  
...  

ABSTRACTEpitaxial growth of the ferromagnetic semiconductors GaMnP:C and GaMnN has been investigated by Gas Source Molecular Beam Epitaxy (GSMBE). GaMnP:C films grown with 9.4% Mn are found to be p-type with hysteretic behavior to room temperature. GaMnN films grown at 700 °C with 2.8% Mn show hysteresis at 300 K, while temperature-dependent magnetization measurements indicate that the magnetism may persist to much higher temperatures (> 325 K). Samples of AlGaMnN have also been prepared for the first time that show improved surface morphology compared to GaMnN but which show only paramagnetic behavior.


2005 ◽  
Vol 877 ◽  
Author(s):  
Doo Suk Han ◽  
Chan Woong Na ◽  
Woo Sung Jang ◽  
Seung Yong Bae ◽  
Jeunghee Park

AbstractWe report Mn-doped GaN nanowires exhibiting ferromagnetism even at room temperature. The growth of single-crystalline wurtzite structured GaN nanowires doped homogeneously with about 5 atomic % Mn was achieved by chemical vapor deposition using the reaction of Ga/GaN/MnCl2 with NH3. The ferromagnetic hysteresis at 5 and 300 K and the temperature-dependent magnetization curves suggest the Curie temperature around 300 K. Negative magnetoresistance of individual nanowires was observed at the temperatures below 100 K.


Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


1996 ◽  
Vol 452 ◽  
Author(s):  
N. H. Nickel ◽  
E. A. Schiff

AbstractThe temperature dependence of the silicon dangling-bond resonance in polycrystalline (poly-Si) and amorphous silicon (a-Si:H) was measured. At room temperature, electron paramagnetic resonance (EPR) measurements reveal an isotropie g-value of 2.0055 and a line width of 6.5 and 6.1 G for Si dangling-bonds in a-Si:H and poly-Si, respectively. In both materials spin density and g-value are independent of temperature. While in a-Si:H the width of the resonance did not change with temperature, poly-Si exhibits a remarkable T dependence of ΔHpp. In unpassivated poly-Si a pronounced decrease of ΔHpp is observed for temperatures above 300 K. At 384 K ΔHpp reaches a minimum of 5.1 G, then increases to 6.1 G at 460 K, and eventually decreases to 4.6 G at 530 K. In hydrogenated poly-Si ΔHpp decreases monotonically above 425 K. The decrease of ΔHpp is attributed to electron hopping causing motional narrowing. An average hopping distance of 15 and 17.5 Å was estimated for unhydrogenated and H passivated poly-Si, respectively.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Miao Hui ◽  
...  

AbstractAggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aastha Vasdev ◽  
Moinak Dutta ◽  
Shivam Mishra ◽  
Veerpal Kaur ◽  
Harleen Kaur ◽  
...  

AbstractA remarkable decrease in the lattice thermal conductivity and enhancement of thermoelectric figure of merit were recently observed in rock-salt cubic SnTe, when doped with germanium (Ge). Primarily, based on theoretical analysis, the decrease in lattice thermal conductivity was attributed to local ferroelectric fluctuations induced softening of the optical phonons which may strongly scatter the heat carrying acoustic phonons. Although the previous structural analysis indicated that the local ferroelectric transition temperature would be near room temperature in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te , a direct evidence of local ferroelectricity remained elusive. Here we report a direct evidence of local nanoscale ferroelectric domains and their switching in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te using piezoeresponse force microscopy(PFM) and switching spectroscopy over a range of temperatures near the room temperature. From temperature dependent (250–300 K) synchrotron X-ray pair distribution function (PDF) analysis, we show the presence of local off-centering distortion of Ge along the rhombohedral direction in global cubic $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te . The length scale of the $${\text {Ge}}^{2+}$$ Ge 2 + off-centering is 0.25–0.10 Å near the room temperatures (250–300 K). This local emphatic behaviour of cation is the cause for the observed local ferroelectric instability, thereby low lattice thermal conductivity in $${\text {Sn}}_{0.7}{\text {Ge}}_{0.3}{\text {Te}}$$ Sn 0.7 Ge 0.3 Te .


Author(s):  
Gyuseung Han ◽  
In Won Yeu ◽  
Kun Hee Ye ◽  
Seung-Cheol Lee ◽  
Cheol Seong Hwang ◽  
...  

Through DFT calculations, a Be0.25Mg0.75O superlattice having long apical Be–O bond length is proposed to have a high bandgap (>7.3 eV) and high dielectric constant (∼18) at room temperature and above.


Author(s):  
Junyu Chang ◽  
Xiaobo Zhang ◽  
Zhenming Wang ◽  
Chunsheng Li ◽  
Qi Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document