Grafting of TiO2 on PMMA Film and Reusability in Photodegradation of Organic Dye

2016 ◽  
Vol 99 ◽  
pp. 17-21
Author(s):  
Rachan Klaysri ◽  
Sopita Wichaidit ◽  
Piyasan Praserthdam ◽  
Okorn Mekasuwandumrong

Grafting TiO2 on PMMA was studied by atom-transfer radical-polymerization (ATRP). Each step in grafting process was monitored by fourier transform infrared spectroscopy (FT-IR), 1H NMR and 13C NMR spectra. The glass temperature of grafted-PMMA film was determined by using differential scanning calorimetry (DSC). The morphology and bulk composition were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). The surface composition was characterized by X-ray photoelectron spectroscopy (XPS). As results, a novel method of grafting TiO2 on PMMA was successfully grafted and confirmed in various techniques. The photocatlytic activity was evaluated under UV and visible light irradiation. The reusability of TiO2-g-PMMA films was studied in details.

e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahram Mehdipour-Ataei ◽  
Leila Akbarian-Feizi

AbstractA diamine monomer containing ester, amide and ether functional groups was prepared and its polymerization reaction with different diisocyanates to give main chain poly(ester amide ether urea)s was investigated. The monomer was synthesized via reaction of terephthaloyl chloride with 4-hydroxybenzoic acid and subsequent reaction of the resulted diacid with 1,8-diamino-3,6-dioxaoctane. The polymers were characterized by FT-IR and 1H-NMR spectroscopic method and elemental analysis. The resulting polymers exhibited excellent solubility in polar solvents. Crystallinity of the resulted polymers was evaluated by wide-angle X-ray diffraction (WXRD) method, and they exhibited semi-crystalline patterns. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) were in the range of 88-112 °C. The temperatures for 10% weight loss (T10) from their thermogravimetric analysis (TGA) curves were found to be in the range of 297-312 °C in air. Also the prepared polyureas showed liquid crystalline character.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1725 ◽  
Author(s):  
Xiaohong Liu ◽  
Ming Li ◽  
Xuemei Zheng ◽  
Elias Retulainen ◽  
Shiyu Fu

As a type of functional group, azo-derivatives are commonly used to synthesize responsive materials. Cellulose nanocrystals (CNCs), prepared by acid hydrolysis of cotton, were dewatered and reacted with 2-bromoisobuturyl bromide to form a macro-initiator, which grafted 6-[4-(4-methoxyphenyl-azo) phenoxy] hexyl methacrylate (MMAZO) via atom transfer radical polymerization. The successful grafting was supported by Fourier transform infrared spectroscopy (FT-IR) and Solid magnetic resonance carbon spectrum (MAS 13C-NMR). The morphology and surface composition of the poly{6-[4-(4-methoxyphenylazo) phenoxy] hexyl methacrylate} (PMMAZO)-grafted CNCs were confirmed with Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The grafting rate on the macro-initiator of CNCs was over 870%, and the polydispersities of branched polymers were narrow. The crystal structure of CNCs did not change after grafting, as determined by X-ray diffraction (XRD). The polymer PMMAZO improved the thermal stability of cellulose nanocrystals, as shown by thermogravimetry analysis (TGA). Then the PMMAZO-grafted CNCs were mixed with polyurethane and casted to form a composite film. The film showed a significant light and pH response, which may be suitable for visual acid-alkali measurement and reversible optical storage.


2005 ◽  
Vol 13 (8) ◽  
pp. 839-846 ◽  
Author(s):  
Li-Ping Wang ◽  
Yun-Pu Wang ◽  
Fa-Ai Zhang

A new type of nano-composite film was prepared from polyvinyl alcohol, Ni2+-montmorillonite (Ni2+-MMT), defoamer, a levelling agent and a plasticizer. Its thermal characteristics were studied by Differential Scanning Calorimetry (DSC). The intermolecular interactions were measured by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the tensile strength (TS) and elongation at break (%E) were measured. The microstructures were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). FT-IR and XPS spectra indicated that cross-linking has taken place between PVA and Ni2+-MMT. XRD and AFM indicate that the PVA molecules had inserted themselves into the silicate layers of MMT, exfoliating them and dispersing them randomly into the PVA matrix. Compared to pure PVA film, the TS of the films was increased and %E decreased when the Ni2+-Montmorillonite was added and the dissolution temperature of the film was also reduced.


Author(s):  
Changqing Liu ◽  
David A. Hutt ◽  
Dezhi Li ◽  
Paul P. Conway

This paper aims to gain an insight into the correlation between the microstructure and surface composition of electroless Ni-P and its behaviour during soldering with Pb free alloys including Sn-3.8Ag-0.7Cu, Sn-3.5Ag and Sn-0.7Cu. Ni-P coatings with different P contents were produced through an industrial process on copper metal substrates. The surface morphology of these coatings was observed by Scanning Electron Microscopy (SEM) and the bulk composition was analyzed by means of Energy Dispersive X-ray analysis (EDX). The mechanical properties of the coatings were evaluated by nano-indentation testing under different maximum loads. However, to understand the behaviour of P in Ni-P coatings and deterioration of the coating surfaces during exposure to air, the surfaces of the coatings were also characterised by X-ray Photoelectron Spectroscopy (XPS) for storage at different temperatures. The dependence of the solderability of Ni-P coatings on the storage time and temperature was investigated by wetting balance testing, using an inactive or active flux with or without an inert N2 atmosphere. Finally, the solderability of Ni-P coatings to Pb free solders is correlated with their composition and microstructure (e.g. surface characteristics).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Joo Hyung Lee ◽  
Seong Hun Kim

Abstract Incorporation of nanofillers into polyurethane (PU) is a promising technique for enhancing its thermal and mechanical properties. Silane grafting has been used as a surface treatment for the functionalization of graphene oxide (GO) with numerous reactive sites dispersed on its basal plane and edge. In this study, amine-grafted GO was prepared using silanization of GO with (3-aminopropyl)triethoxysilane. The functionalized graphene oxide (fGO) was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy. Next, it was introduced in PU fabricated using polycaprolactone diol, castor oil, and hexamethylene diisocyanate. The fGO–PU nanocomposites were in turn characterized by FT-IR, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and a universal testing machine. The results obtained from these analyses showed changes in structural thermal properties, as well as improved thermal stability and mechanical properties because of the strong interfacial adhesion between the fGO and the PU matrix.


e-Polymers ◽  
2016 ◽  
Vol 16 (1) ◽  
pp. 33-39 ◽  
Author(s):  
Samira Moqadam ◽  
Mehdi Salami-Kalajahi

AbstractPolysulfide polymers usually are prepared by the reaction of different dihalide compounds with disodium polysulfides. In this field, dihalides are expensive and produced from halogenation of organic compounds by different methods with harsh conditions. To overcome this problem, in this work, sunflower oil as polyunsaturated oil was used as precursor to produce polyhalide compound. In this field, double bonds of oil were applied as functional groups to halogenate the sunflower via benzoyl peroxide-catalyzed reaction with hydrochloric acid. Also, Na2S3 was synthesized via the reaction between sulfur and sodium hydroxide. Then, halogenated oil was reacted with Na2S3 to produce sunflower oil-based polysulfide polymer. Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR) were used to characterize the structure of sunflower oil and synthesized polysulfide polymer. The content of halogenation was also obtained via energy-dispersive X-ray spectroscopy (EDX). Thermal stability of synthesized polymer was determined by means of thermal gravimetric analysis (TGA) and glass transition temperature was investigated by differential scanning calorimetry (DSC).


1996 ◽  
Vol 426 ◽  
Author(s):  
Y. A. Cho ◽  
W. J. Nam ◽  
H. S. Kim ◽  
G. Y. Yeom ◽  
J. K. Yoon ◽  
...  

AbstractRapid thermal annealing (RTA) was applied to anneal polycrystalline CdTe thin films evaporated on CdS/ITO substrate and the effects of rapid thermal annealing temperatures and gas environments were studied. X-ray diffractometer (XRD), X-ray photoelectron spectroscopy(XPS), energy dispersive X-ray spectroscopy(EDX), cross-sectional transmission microscopy(TEM), and micro-EDX in TEM were used to characterize physical and chemical properties of rapid thermal annealed CdTe thin films. Complete CdTe/CdS photovoltaic cells were fabricated and I-V characteristics of these cells were measured under the illumination. Results showed that the bulk composition of CdTe remained stoichiometric to 550°C in the air environment and surface composition became Cd-rich. Cross-sectional TEM and micro-EDX showed columnar grains and micro-twins remained even after RTA, however, sulfur content in rapid thermal annealed CdTe caused by sulfur diffusion from CdS during the annealing was much smaller than that by furnace annealing. Among the investigated RTA temperatures and gas environments, the cell made with CdTe annealed at 550°C in the air showed the best solar energy conversion efficiency.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Juliusz Winiarski ◽  
Włodzimierz Tylus ◽  
Katarzyna Winiarska ◽  
Irena Szczygieł ◽  
Bogdan Szczygieł

ZnO, Zn(OH)2, Zn5(OH)8Cl2·H2O, ZnCO3, and Zn5(CO3)2(OH)6 synthetic powders were prepared by chemical or solid-state method. Their crystalline phase structure, thermal behavior, and morphology were examined. Characteristic infrared absorbance bands were estimated by means of FT-IR ATR spectroscopy. X-ray photoelectron spectroscopy (XPS) allowed to calculate the modified Auger parameters (α ′) thereof to 2010.2, 2009.3, 2009.4, 2009.7, and 2009.8 eV, respectively for ZnO, Zn(OH)2, Zn5(OH)8Cl2·H2O, ZnCO3, and Zn5(CO3)2(OH)6. Finally, comparison of surface composition may be crucial to evaluation of the unknown experimental spectra of corrosion products formed on the surface of zinc alloy coatings exposed in NaCl solution.


1995 ◽  
Vol 388 ◽  
Author(s):  
Douglas A. A. Ohlberg ◽  
Garry Rose ◽  
James Ren ◽  
R. Stanley Williams

AbstractPulsed, supersonic jets of CBr4 seeded in a hydrogen bath gas have been used to deposit films on silicon at low temperatures (c A. 100° C) in a high vacuum chamber. IN situ analysis of the films using x-ray photoelectron spectroscopy (XPS) and depth profiling indicate a surface composition of 34% Br and 66 % C and a bulk composition of 88% C and 12% Br. the deposition efficiency of CBr4 was found to drop dramatically when seeded in bath gases of deuterium, helium, and argon, suggesting that the film growth is an activated process, requiring precursor energies of at least 3.6 eV.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 980
Author(s):  
Davide M. S. Marcolongo ◽  
Francesco Nocito ◽  
Nicoletta Ditaranto ◽  
Michele Aresta ◽  
Angela Dibenedetto

In the present paper, we report the synthesis and characterization of both binary (Cu2O, Fe2O3, and In2O3) and ternary (Cu2O-Fe2O3 and Cu2O-In2O3) transition metal mixed-oxides that may find application as photocatalysts for solar driven CO2 conversion into energy rich species. Two different preparation techniques (High Energy Milling (HEM) and Co-Precipitation (CP)) are compared and materials properties are studied by means of a variety of characterization and analytical techniques UV-Visible Diffuse Reflectance Spectroscopy (UV-VIS DRS), X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Energy Dispersive X-Ray spectrometry (EDX). Appropriate data elaboration methods are used to extract materials bandgap for Cu2O@Fe2O3 and Cu2O@In2O3 prepared by HEM and CP, and foresee whether the newly prepared semiconductor mixed oxides pairs are useful for application in CO2-H2O coprocessing. The experimental results show that the synthetic technique influences the photoactivity of the materials that can correctly be foreseen on the basis of bandgap experimentally derived. Of the mixed oxides prepared and described in this work, only Cu2O@In2O3 shows positive results in CO2-H2O photo-co-processing. Preliminary results show that the composition and synthetic methodologies of mixed-oxides, the reactor geometry, the way of dispersing the photocatalyst sample, play a key role in the light driven reaction of CO2–H2O. This work is a rare case of full characterization of photo-materials, using UV-Visible DRS, XPS, XRD, TEM, EDX for the surface and bulk analytical characterization. Surface composition may not be the same of the bulk composition and plays a key role in photocatalysts behavior. We show that a full material knowledge is necessary for the correct forecast of their photocatalytic behavior, inferred from experimentally determined bandgaps.


Sign in / Sign up

Export Citation Format

Share Document