Low Temperature Film Growth by Supersonic Jets of CBr4

1995 ◽  
Vol 388 ◽  
Author(s):  
Douglas A. A. Ohlberg ◽  
Garry Rose ◽  
James Ren ◽  
R. Stanley Williams

AbstractPulsed, supersonic jets of CBr4 seeded in a hydrogen bath gas have been used to deposit films on silicon at low temperatures (c A. 100° C) in a high vacuum chamber. IN situ analysis of the films using x-ray photoelectron spectroscopy (XPS) and depth profiling indicate a surface composition of 34% Br and 66 % C and a bulk composition of 88% C and 12% Br. the deposition efficiency of CBr4 was found to drop dramatically when seeded in bath gases of deuterium, helium, and argon, suggesting that the film growth is an activated process, requiring precursor energies of at least 3.6 eV.

1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


Author(s):  
Changqing Liu ◽  
David A. Hutt ◽  
Dezhi Li ◽  
Paul P. Conway

This paper aims to gain an insight into the correlation between the microstructure and surface composition of electroless Ni-P and its behaviour during soldering with Pb free alloys including Sn-3.8Ag-0.7Cu, Sn-3.5Ag and Sn-0.7Cu. Ni-P coatings with different P contents were produced through an industrial process on copper metal substrates. The surface morphology of these coatings was observed by Scanning Electron Microscopy (SEM) and the bulk composition was analyzed by means of Energy Dispersive X-ray analysis (EDX). The mechanical properties of the coatings were evaluated by nano-indentation testing under different maximum loads. However, to understand the behaviour of P in Ni-P coatings and deterioration of the coating surfaces during exposure to air, the surfaces of the coatings were also characterised by X-ray Photoelectron Spectroscopy (XPS) for storage at different temperatures. The dependence of the solderability of Ni-P coatings on the storage time and temperature was investigated by wetting balance testing, using an inactive or active flux with or without an inert N2 atmosphere. Finally, the solderability of Ni-P coatings to Pb free solders is correlated with their composition and microstructure (e.g. surface characteristics).


2000 ◽  
Vol 612 ◽  
Author(s):  
J. S. Pan ◽  
A. T. S. Wee ◽  
C. H. A. Huan ◽  
J. W. Chai ◽  
J. H. Zhang

AbstractTantalum (Ta) thin films of 35 nm thickness were investigated as diffusion barriers as well as adhesion-promoting layers between Cu and SiO2 using X-ray diffractometry (XRD), Scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). After annealing at 600°C for 1h in vacuum, no evidence of interdiffusion was observed. However, XPS depth profiling indicates that elemental Si appears at the Ta/SiO2 interface after annealing. In-situ XPS studies show that the Ta/SiO2 interface was stable until 500°C, but about 32% of the interfacial SiO2 was reduced to elemental Si at 600°C. Upon cooling to room temperature, some elemental Si recombined to form SiO2 again, leaving only 6.5% elemental Si. Comparative studies on the interface chemical states of Cu/SiO2 and Ta/SiO2 indicate that the stability of the Cu/Ta/SiO2/Si system may be ascribed to the strong bonding of Ta and SiO2, due to the reduction of SiO2 through Ta oxide formation.


2008 ◽  
Vol 104 (7) ◽  
pp. 074316 ◽  
Author(s):  
M. Murugesan ◽  
J. C. Bea ◽  
C.-K. Yin ◽  
H. Nohira ◽  
E. Ikenaga ◽  
...  

2018 ◽  
Vol 20 (11) ◽  
pp. 7862-7874 ◽  
Author(s):  
Ilyas Unlu ◽  
Julie A. Spencer ◽  
Kelsea R. Johnson ◽  
Rachel M. Thorman ◽  
Oddur Ingólfsson ◽  
...  

Electron-induced surface reactions of (η5-C5H5)Fe(CO)2Mn(CO)5were exploredin situunder ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry.


2016 ◽  
Vol 99 ◽  
pp. 17-21
Author(s):  
Rachan Klaysri ◽  
Sopita Wichaidit ◽  
Piyasan Praserthdam ◽  
Okorn Mekasuwandumrong

Grafting TiO2 on PMMA was studied by atom-transfer radical-polymerization (ATRP). Each step in grafting process was monitored by fourier transform infrared spectroscopy (FT-IR), 1H NMR and 13C NMR spectra. The glass temperature of grafted-PMMA film was determined by using differential scanning calorimetry (DSC). The morphology and bulk composition were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). The surface composition was characterized by X-ray photoelectron spectroscopy (XPS). As results, a novel method of grafting TiO2 on PMMA was successfully grafted and confirmed in various techniques. The photocatlytic activity was evaluated under UV and visible light irradiation. The reusability of TiO2-g-PMMA films was studied in details.


1996 ◽  
Vol 426 ◽  
Author(s):  
Y. A. Cho ◽  
W. J. Nam ◽  
H. S. Kim ◽  
G. Y. Yeom ◽  
J. K. Yoon ◽  
...  

AbstractRapid thermal annealing (RTA) was applied to anneal polycrystalline CdTe thin films evaporated on CdS/ITO substrate and the effects of rapid thermal annealing temperatures and gas environments were studied. X-ray diffractometer (XRD), X-ray photoelectron spectroscopy(XPS), energy dispersive X-ray spectroscopy(EDX), cross-sectional transmission microscopy(TEM), and micro-EDX in TEM were used to characterize physical and chemical properties of rapid thermal annealed CdTe thin films. Complete CdTe/CdS photovoltaic cells were fabricated and I-V characteristics of these cells were measured under the illumination. Results showed that the bulk composition of CdTe remained stoichiometric to 550°C in the air environment and surface composition became Cd-rich. Cross-sectional TEM and micro-EDX showed columnar grains and micro-twins remained even after RTA, however, sulfur content in rapid thermal annealed CdTe caused by sulfur diffusion from CdS during the annealing was much smaller than that by furnace annealing. Among the investigated RTA temperatures and gas environments, the cell made with CdTe annealed at 550°C in the air showed the best solar energy conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document