Recovery of Excavated Materials as an Alternative Solution to Earth Building Materials

Author(s):  
Mohammed Nouali ◽  
Mickael Saillio ◽  
Elhem Ghorbel

The tunnel excavation works generate huge quantities of earth. These excavated materials are primarily stored in landfills. This paper proposes an alternative solution for valorizing excavated earth in earthen constructions. Firstly, the excavated earth was characterized using differential and gravimetric thermal analysis (DTA / TGA), infrared spectra (FTIR), and X-ray diffraction. Hence, sand, fine particles, and water extracted from excavated earth are used to elaborate mortars’ stabilized with cement, lime, and slag. Short hemp fibers were also used to diminish shrinkage cracks. The quantity of stabilizers was fixed to 5% by weight of the excavated earth while the water/solid ratio was maintained constant and equal to 0.45. Five different mortar formulations were performed using excavated earth and were cured for 28 days in a controlled environment before testing. Compressive and three-point flexural tests were carried out to determine specimens’ mechanical properties. The characterization results show that the excavated earth are mainly composed of dolomite, calcite, quartz, and clay. While, the mechanical results show that the stabilized excavated earth with cement additive presents higher mechanical properties relative to the other additives.

2018 ◽  
Vol 163 ◽  
pp. 06003
Author(s):  
Tomasz Piotrowski ◽  
Piotr Prochoń

The development of sustainable building materials with reduced environmental footprint in both, manufacturing and operational phases of the material lifecycle, is attracting increased interest in the construction industry worldwide. A recent innovation, the geopolymer foam concrete, combines the performance benefits and operational energy savings achievable through the use of lightweight foam concrete, with the cradle-togate emissions reductions obtained through the use of a geopolymer binder derived from granulated blast-furnace slag (GBFS). In this study mechanical properties of GBFS-based foam concrete were investigated for samples of different water to solid ratio (0.252, 0.287 and 0.321). According to ASTM C 796-97 both mass of the foaming solution and water in sodium silicate solution was considered as part of the total amount of mixing water. As a solid part, GBFS and solid part of activators (NaOH and sodium silicate) was accounted. A group of specimens (40x40x160 beams and 100x100x100 cubes) have been prepared and volume density, bending, compressive strength tests have been performed. In a result an optimized lightweight GBFS-based geopolymer foam concrete was obtained, characterized by 1.8 kg/dm3 volume density, 2.6 MPa bending strength and 51.8 MPa compressive strength measured on beams and 44.1 MPa compressive strength on cubes.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3485 ◽  
Author(s):  
Vogt ◽  
Ukrainczyk ◽  
Ballschmiede ◽  
Koenders

Geopolymers are inorganic binders based on mixtures of an aluminosilicate powder with an alkali-silicate solution. Properties of geopolymers are strongly determined by the type of reactive solid, the liquid/solid ratio of paste and, amongst others, the Si/Al ratio of the formed geopolymer network. In this study, fly ash blended metakaolin based geopolymers with varying liquid/solid ratios (l/s), activated by potassium silicate solution, are investigated. Reactivity of metakaolin and fly ash was investigated by powder X-ray diffraction (XRD) and dissolution tests. Reactivity, mechanical properties and microstructure of hardened pastes were analyzed by setting and compressive strength tests, mercury intrusion porosimetry (MIP), capillary water absorption tests, thermogravimetric analysis-differential scanning calorimeter (TGA-DSC), isothermal calorimetry and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results show that substitution of metakaolin by fly ash as well as variation of l/s brings advantages up to a certain degree, but also has a considerable influence on the pore size distribution, mechanical properties, Si/Al ratio of the geopolymer network and the content of bound water.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Isiaka Oluwole Oladele ◽  
Temitope Akinyemi Adewole

This work was carried out to investigate the influence of cow bone particle size distribution on the mechanical properties of polyester matrix composites in order to consider the suitability of the materials as biomaterials. Cow bone was procured from an abattoir, washed with water, and sun-dried for 4 weeks after which it was crushed with a sledge hammer and was further pulverized with laboratory ball mill. Sieve size analysis was carried out on the pulverized bone where it was sieved into three different sizes of 75, 106, and 300 m sieve sizes. Composite materials were developed by casting them into tensile and flexural tests moulds using predetermined proportions of 2, 4, 6, and 8%. The samples after curing were striped from the moulds and were allowed to be further cured at room temperature for 3 weeks before tensile and flexural tests were performed on them. Both tensile and flexural strength were highly enhanced by 8 wt% from 75 m while toughness was highly enhanced by 6 and 8 wt% from 300 m. This shows that fine particles lead to improved strength while coarse particles lead to improved toughness. The results show that these materials are structurally compatible and are being developed from animal fibre based particle; it is expected to also aid the compatibility with the surface conditions as biomaterials.


2021 ◽  
Vol 39 (6) ◽  
pp. 986-995
Author(s):  
Ehab Q. Kaadhm ◽  
Khansaa D. Salman ◽  
Ahmed H. Reja

In this paper, study the effects of magnetite nanomaterial Fe3O4 on the mechanical properties of epoxy. Dispersion of Fe3O4 nanoparticles in the epoxy resin was performed by ultrasonication. The samples of the nanocomposites were prepared using the casting method. The nanocomposites contain epoxy resins as a matrix material incorporated by different weight percentages of magnetite Fe3O4 that varies from 0wt.% to 15wt.% as a reinforcing material. The epoxy with the additive reinforcement materials Fe3O4 was slowly mixed in a sonication bath for 15 minutes, then the mixture poured into silicon molds. Field Emission Scanning Electron Microscopy FESEM and X-ray diffraction spectra XRD were used to characterize the morphological and structural properties of preparing samples and the distribution of Fe3O4 nanoparticles to the epoxy resin. Mechanical testing consists of tensile, hardness shore, and three-point flexural tests were performed on the samples at room temperature according to ASTM standards. The results showed that reinforcement by 15wt.% of Fe3O4 nanoparticles maximizes these mechanical properties of nanocomposites compared with pure epoxy except for the young modulus's preferred weight at 9 wt.%, this is due to aggregation of the additives nanomaterials in epoxy resin above 9 wt.%.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2014 ◽  
Vol 606 ◽  
pp. 253-256 ◽  
Author(s):  
Martin Ovsik ◽  
Petr Kratky ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
...  

This article deals with the influence of different doses of Beta radiation to the structure and mico-mechanical properties of Low-density polyethylene (LDPE). Hard surface layers of polymer materials, especially LDPE, can be formed by radiation cross-linking by β radiation with doses of 33, 66 and 99 kGy. Material properties created by β radiation are measured by micro-hardness test using the DSI method (Depth Sensing Indentation). Individual radiation doses caused structural and micro-mechanical changes which have a significant effect on the final properties of the LDPE tested. The highest values of micro-mechanical properties were reached at radiation dose of 66 and 99 kGy, when the micro-hardness values increased by about 21%. The changes were examined and confirmed by X-ray diffraction.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


Sign in / Sign up

Export Citation Format

Share Document