Experimental Study of Temperature Effect on Oil Relative Permeability in Porous Media

2013 ◽  
Vol 336 ◽  
pp. 19-27 ◽  
Author(s):  
Mohammad Afkhami Karaei ◽  
Ali Ahmadi ◽  
Hooman Fallah ◽  
Abdolreza Dabiri

In the modeling of thermal recovery processes of heavy oil, it is important to know the oil primary relative permeability in the reservoir; moreover we have to be aware of effects of the temperature on oil relative permeability as well. In this study, a sand pack of quartz (SiO2) has been used to simulate and make a porous medium. Quartz is naturally water wet. During experiments there was no change in the pore volume of the media at different temperatures because of the low expansion coefficient of quartz. The fluid used in experiments is engine oil 50. Glass pipes with length of 91cm and diameter of 2.6cm have been used in the experiments. At first, columns have been filled with sand, which sand grains had different diameters, then carbon dioxide was injected to the columns to deplete the air in the pores , then the porous media have been saturated with water to calculate the porosity using the scale model. In addition according to Darcys law in steady state, the absolute permeability was calculated. In the next step, oil was injected to columns until the water saturation reached connate water saturation and finally, water injection was begun to get residual oil saturation (Sor). Experiments results showed that increase of temperature increases the oil relative permeability, note that wetability was constant. Increasing the temperature decreases the oil viscosity then this reduction causes the fluid to move easier and its velocity increases as well.

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1057 ◽  
Author(s):  
Mingxuan Zhu ◽  
Li Yu ◽  
Xiong Zhang ◽  
Afshin Davarpanah

Hydrocarbon reservoirs’ formation damage is one of the essential issues in petroleum industries that is caused by drilling and production operations and completion procedures. Ineffective implementation of drilling fluid during the drilling operations led to large volumes of filtrated mud penetrating into the reservoir formation. Therefore, pore throats and spaces would be filled, and hydrocarbon mobilization reduced due to the porosity and permeability reduction. In this paper, a developed model was proposed to predict the filtrated mud saturation impact on the formation damage. First, the physics of the fluids were examined, and the governing equations were defined by the combination of general mass transfer equations. The drilling mud penetration in the core on the one direction and the removal of oil from the core, in the other direction, requires the simultaneous dissolution of water and oil flow. As both fluids enter and exit from the same core, it is necessary to derive the equations of drilling mud and oil flow in a one-dimensional process. Finally, due to the complexity of mass balance and fluid flow equations in porous media, the implicit pressure-explicit saturation method was used to solve the equations simultaneously. Four crucial parameters of oil viscosity, water saturation, permeability, and porosity were sensitivity-analyzed in this model to predict the filtrated mud saturation. According to the results of the sensitivity analysis for the crucial parameters, at a lower porosity (porosity = 0.2), permeability (permeability = 2 mD), and water saturation (saturation = 0.1), the filtrated mud saturation had decreased. This resulted in the lower capillary forces, which were induced to penetrate the drilling fluid to the formation. Therefore, formation damage reduced at lower porosity, permeability and water saturation. Furthermore, at higher oil viscosities, due to the increased mobilization of oil through the porous media, filtrated mud saturation penetration through the core length would be increased slightly. Consequently, at the oil viscosity of 3 cP, the decrease rate of filtrated mud saturation is slower than other oil viscosities which indicated increased invasion of filtrated mud into the formation.


2020 ◽  
Vol 17 (36) ◽  
pp. 634-645
Author(s):  
Izzat Niazi SULAIMAN ◽  
Yahya Jirjees TAWFEEQ

Practically all studies of reservoir engineering involve detailed knowledge of fluid flow characteristics. The fluid flow performance in porous media is affected by pressure, flow rate, and volume of single fluid phases. Permeability is a measure of how well a porous media allows the flow of fluids through it. Permeability and porosity form the two significant characteristics of reservoir rocks. This research aimed to present the design of laboratory equipment to test the ability of fluid flow through different sandstone samples. Two sand core samples (coarse sand sample and fine sand sample) were tested. The laboratory findings measurements of porosity, saturation, total permeability, effective permeability, and relative permeability were evaluated. The laboratory tests were performed on partially saturated, unconsolidated core sand for two-phase fluid flow. The experimental work was developed for measuring the flow capacity achieved under the steady-state conditions method. Various grain sizes sands were selected as a porous medium to determine petrophysical properties and fluid flow capacity of the rock sample. Nitrogen and air were utilized as gas-phases, and, for liquid-phases, water was chosen as an injection fluid. The steady-state process method was used to determine the permeability and relative permeability of unconsolidated sands to water flow. Different flow rates were measured for different pressure gradients in a viscose flow. As the flow rate increases, the pressure difference also increased. It can be observed that there are a direct correlation and relationship between the flow rate and the pressure difference. The core plug's absolute permeability was measured using Darcy Equation. Absolute permeability does not depend on fluid characteristics but only on media properties. The sample container contains a more significant amount of sand, decrease the permeability, and therefore requires high pressure for fluid flowing within the sample.


2020 ◽  
Vol 10 (8) ◽  
pp. 3649-3661
Author(s):  
Meiling Zhang ◽  
Jiayi Fan ◽  
Yongchao Zhang ◽  
Yinxin Liu

Abstract The water cutting rate is recorded dynamically during the production process of a well. If the remaining oil saturation of the reservoir can be deduced based on the water cutting rate, it will give guidance to improve the reservoir recovery and can save expensive drilling costs. In the oil–water two-phase seepage experiment on core samples, the oil and water relative permeability reflects the relationship between the water cutting rate and water saturation, that is, percolating saturation formula. The relative permeability test data of 17 rock samples from six seal coring wells in Daqing Changyuan were used to optimize and construct the coefficients of the index percolating saturation formula that vary with the pore structure parameters of reservoirs, to form an index percolating saturation formula with variable coefficients that is more consistent with the regional geological characteristics of the reservoir. Based on this, the formula of water saturation calculated by the water cutting rate is deduced. And the high-precision formula for calculating the irreducible water saturation and residual oil saturation by effective porosity, absolute permeability, and shale content is given. The derivative formula of water saturation on the water cutting rate was established, and the parameters of 17 rock samples were calculated. It was found that the variation velocity of water saturation of each sample with the water cutting rate presented a “U” shape, which was consistent with the actual characteristics that the variation velocity of the water saturation in the early, middle, and late stages of oilfield development first decreased, then stabilized, and finally increased rapidly. The research results were applied to the prediction of remaining oil saturation in the research area, and the water saturation about six producing wells was calculated by using their present water cutting rates, and the remaining oil distribution profile was predicted effectively. The analysis of four layers of two newly drilled infill wells and reasonable oil recovery suggestions were given to achieve good results.


SPE Journal ◽  
2021 ◽  
pp. 1-22
Author(s):  
Hasan Al-Ibadi ◽  
Karl Stephen ◽  
Eric Mackay

SummaryModeling the dynamic fluid behavior of low-salinity waterflooding (LSWF) at the reservoir scale is a challenge that requires a coarse-grid simulation to enable prediction in a feasible time scale. However, evidence shows that using low-resolution models will result in a considerable mismatch compared with an equivalent fine-scale model with the potential of strong, numerically induced pulses and other dispersion-related effects. This work examines two new upscaling methods that have been applied to improve the accuracy of predictions in a heterogeneous reservoir where viscous crossflow takes place.We apply two approaches to upscaling to bring the flow prediction closer to being exact. In the first method, we shift the effective-salinity range for the coarse model using algorithms that we have developed to correct for numerical dispersion and associated effects. The second upscaling method uses appropriately derived pseudorelative permeability curves. The shape of these new curves is designed using a modified fractional-flow analysis of LSWF that captures the relationship between dispersion and the waterfront velocities. This second approach removes the need for explicit simulation of salinity transport to model oil displacement. We applied these approaches in layered models and for permeability distributed as a correlated random field.Upscaling by shifting the effective-salinity range of the coarse-grid model gave a good match to the fine-scale scenario, while considerable mismatch was observed for upscaling of the absolute permeability alone. For highly coarsened models, this method of upscaling reduced the appearance of numerically induced pulses. On the other hand, upscaling by using a single (pseudo)relative permeability produced more robust results with a very promising match to the fine-scale scenario. These methods of upscaling showed promising results when they were used to scale up fully communicating and noncommunicating layers as well as models with randomly correlated permeability.Unlike documented methods in the literature, these newly derived methods take into account the substantial effects of numerical dispersion and effective concentration on fluid dynamics using mathematical tools. The methods could be applied for other models where the phase mobilities change as a result of an injected solute, such as surfactant flooding and alkaline flooding. Usually these models use two sets of relative permeability and switch from one to another as a function of the concentration of the solute.


2006 ◽  
Vol 9 (04) ◽  
pp. 295-301 ◽  
Author(s):  
Kewen Li ◽  
Kevin Chow ◽  
Roland N. Horne

Summary It has been a challenge to understand why recovery by spontaneous imbibition could both increase and decrease with initial water saturation. To this end, mathematical models were developed with porosity, permeability, viscosity, relative permeability, capillary pressure, and initial water saturation included. These equations foresee that recovery and imbibition rate can increase, remain unchanged, or decrease with an increase in initial water saturation, depending on rock properties, the quantity of residual gas saturation, the range of initial water saturation, and the units used in the definitions of gas recovery and imbibition rate. The theoretical predictions were verified experimentally by conducting spontaneous water imbibition at five different initial water saturations, ranging from 0 to approximately 50%. The effects of initial water saturation on residual saturation, relative permeability, capillary pressure, imbibition rate, and recovery in gas/water/rock systems by cocurrent spontaneous imbibition were investigated both theoretically and experimentally. Water-phase relative permeabilities and capillary pressures were calculated with the experimental data of spontaneous imbibition. Experimental results in different rocks were compared. Introduction Spontaneous water imbibition is an important mechanism during water injection. Prediction of recovery and imbibition rate by spontaneous water imbibition is essential to evaluate the feasibility and the performance of water injection. For example, is water injection effective in the case of high initial water saturation in reservoirs? Answers to such a question may be found by investigating the effect of initial water saturation on spontaneous water imbibition. It has been observed experimentally that initial water saturation affects recovery and production rate significantly (Blair 1964; Zhou et al. 2000; Viksund et al. 1998; Cil et al. 1998; Tong et al. 2001; Li and Firoozabadi 2000; Akin et al. 2000). However, the experimental observations from different authors (Zhou et al. 2000; Cil et al. 1998; Li and Firoozabadi 2000; Akin et al. 2000) are not consistent. On the other hand, few studies have investigated the effect of initial water saturation on recovery and imbibition rate theoretically, especially in gas reservoirs. Using numerical-simulation techniques, Blair (1964) found that the quantity and the rate of oil produced after a given period of imbibition increased with a decrease in initial water saturation for countercurrent spontaneous imbibition. Zhou et al. (2000) found that both imbibition rate and final oil recovery in terms of oil originally in place (OOIP) increased with an increase in initial water saturation, whereas oil recovery by waterflooding decreased. Viksund et al. (1998) found that the final oil recovery (OOIP) by spontaneous water imbibition in Berea sandstone showed little variation with a change in initial water saturation from 0 to approximately 30%. For the chalk samples tested by Viksund et al. (1998), the imbibition rate first increased with an increase in initial water saturation and then decreased slightly as initial water saturation increased above 34%.Cil et al. (1998) reported that the oil recovery (in terms of recoverable oil reserves) for zero and 20% initial water saturation showed insignificant differences in behavior. However, the oil recovery for initial water saturation above 20% increased with an increase in initial water saturation. Li and Firoozabadi (2000) found that the final gas recovery in the units of gas originally in place (GOIP) by spontaneous imbibition decreased with an increase in initial water saturation in both gas/oil/rock and gas/water/rock systems. The imbibition rate (GOIP/min) increased with an increase in initial water saturation at early time but decreased at later time. Akin et al. (2000) found that the residual oil saturation was unaffected significantly by initial water saturation. In this study, equations, derived theoretically, were used to study the effect of initial water saturation on gas recovery and imbibition rate. The equations correlate recovery, imbibition rate, initial water saturation, rock/fluid properties, and other parameters. Experiments of spontaneous water imbibition in gas-saturated rocks were conducted to confirm the theoretical predictions. The effect of rock properties on gas recovery and imbibition rate was also studied. An X-ray CT scanner was used to monitor the distribution of the initial water saturation to confirm that the initial distribution of the water saturation was uniform. In this study, we only focused on cocurrent spontaneous imbibition. It was assumed that there were no chemical reactions or mass transfer between gas and liquid.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Olugbenga Falode ◽  
Edo Manuel

An understanding of the mechanisms by which oil is displaced from porous media requires the knowledge of the role of wettability and capillary forces in the displacement process. The determination of representative capillary pressure (Pc) data and wettability index of a reservoir rock is needed for the prediction of the fluids distribution in the reservoir: the initial water saturation and the volume of reserves. This study shows how wettability alteration of an initially water-wet reservoir rock to oil-wet affects the properties that govern multiphase flow in porous media, that is, capillary pressure, relative permeability, and irreducible saturation. Initial water-wet reservoir core samples with porosities ranging from 23 to 33%, absolute air permeability of 50 to 233 md, and initial brine saturation of 63 to 87% were first tested as water-wet samples under air-brine system. This yielded irreducible wetting phase saturation of 19 to 21%. The samples were later tested after modifying their wettability to oil-wet using a surfactant obtained from glycerophtalic paint; and the results yielded irreducible wetting phase saturation of 25 to 34%. From the results of these experiments, changing the wettability of the samples to oil-wet improved the recovery of the wetting phase.


2007 ◽  
Vol 10 (04) ◽  
pp. 423-431 ◽  
Author(s):  
Vincent Blanchard ◽  
Didier Lasseux ◽  
Henri Jacques Bertin ◽  
Thierry Rene Pichery ◽  
Guy Andre Chauveteau ◽  
...  

Summary The objective of this paper is to report some experimental investigations on the effect of polymer adsorption on gas/water flow in non-Darcy regimes in homogeneous porous media, in contrast to previously available analyses focused mainly on the Darcy regime. Our investigation concentrates on gas flow either at low mean pressure, when Klinkenberg effects (or gas slippage) must be considered, or at high flow rates, when inertial effects are significant. The experimental study reported here consists of water and nitrogen injections into various silicon carbide model granular packs having different permeabilities. Experiments are carried out at different water saturations before and after polymer adsorption over flow regimes ranging from slip flow to inertial flow. In good agreement with previous works, in the Darcy regime, we observe an increase in irreducible water saturation and a strong reduction in the relative permeability to water, while the relative permeability to gas is slightly affected. At low mean pressure in the gas phase, the magnitude of the Klinkenberg effect is found to increase with water saturation in the absence of polymer, whereas for the same water saturation, the presence of an adsorbed polymer layer reduces this effect. In the inertial regime, a reduction of inertial effects is observed when gas is injected after polymer adsorption, taking into account water-saturation and permeability modifications. Experimental data are discussed according to hypotheses put forth to explain these effects. Consequences for practical use are also put under prospect. Introduction Water/oil or water/gas flows in porous media are strongly modified in the presence of an adsorbed polymer layer on the pore surface. Several studies, performed in the Darcy regime, showed a phenomenon of disproportionate permeability reduction (DPR). The relative permeability to water (krw) is reduced more than the relative permeability to gas (krg) or to oil (kro). Although this effect was observed over most of the water-soluble polymer/weak gel systems and rock materials, the origin of this effect is still controversial in the literature. Several physical processes have been put forth to explain the selective action of the polymer.Mennella et al. (1998) studied water/oil flows in the presence of an adsorbed polymer layer in random packs of monodisperse spheres. They concluded that the DPR was caused by a swelling/shrinking effect depending on the kind of fluid flowing throughout the packs. They also explained the DPR by pore-scale topological modification (pore-size reduction). Similar studies (Dawe and Zhang 1994; Sparlin and Hagen 1984) were carried out on different systems such as micromodels.Some authors (White et al. 1973; Schneider and Owens 1982; Nilsson et al. 1998) have interpreted the effect of polymer by assuming that a porous medium is composed of separate oil/water pore networks. With this representation, the DPR can be explained by the fact that water permeability is affected by the hydrosoluble polymer present in the pore network occupied by water, while oil permeability is not.Many studies attributed the DPR to a wall effect (Zaitoun and Kohler 1988, 2000; Barreau 1996; Zaitoun et al. 1998), which decreases the pore section accessible to water. The physical origin of this mechanism is adsorption—almost irreversible—on the solid surface. An adsorbed polymer layer on pore walls induces steric hindrance, lubrication effects, and wettability modification, all of which are in favor of a stronger reduction of water permeability than of oil permeability. The physical relevance of this mechanism was tested on numerical simulations at the pore scale (Barreau et al. 1997).Liang and Seright (2000), following Nilsson et al. (1998), proposed to complete the explanation of DPR by a "gel-droplet" model. In this scenario, gel droplets formed in pore bodies cause a higher pressure drop at the pore throat in the wetting phase than in the nonwetting one. These reported studies mainly have been dedicated to the polymer action on oil/water systems, and much less attention has been paid to gas/water flow. However, all available results in this last configuration lead to the same behavior, and the same type of physical explanation (wall effect) was proposed (Zaitoun and Kohler 1989; Zaitoun et al. 1991). If published results dealing with the effect of polymer on permeability reduction observed in the Darcy regime are quite numerous, very little work has been dedicated to the non-Darcy regimes. Elmkies et al. (2002) reported laboratory experimental data showing that adsorbed polymer on natural porous-media cores decreases the inertial effects during gas flow. In this paper, we focus our attention on the influence of adsorbed polymer on gas/water core flow in non-Darcy regimes. Gas injection was performed on unconsolidated cores having different permeabilities, at different water saturations, before and after polymer treatment, and at low mean pressure to investigate Klinkenberg effects, as well as at high flow rates, when inertial effects become important.


2017 ◽  
Vol 4 (1) ◽  
pp. 129-140
Author(s):  
Jorge Ordóñez ◽  
José Villegas ◽  
Alamir Alvarez

En el presente trabajo se propone el uso de un único set de curvas de permeabilidad a ser empleado en los estudios de simulación y caracterización de yacimientos de gas en mantos de carbón (CBM), en vez del uso común de un set de curvas para cada estrato individual. Para comprobar la aplicabilidad de este procedimiento, se simula un yacimiento usando ambos métodos: el resultado de producción debe ser similar en ambas simulacionesEl modelo para promediar la permeabilidad absoluta en un flujo monofásico, fue usado para el caso de predecir un promedio de permeabilidad relativa para un yacimiento con flujo bifásico. Luego de correr varios casos y corroborar que la ecuación propuesta no cumplía las expectativas, el enfoque del trabajo fue explicar el por qué del no funcionamiento de la ecuación propuesta. Una posible explicación fue la no consideración de la gravedad, que acorde a varias simulaciones presentadas, es un parámetro principal en las curvas de producción. La saturación de agua tampoco puede excluirse de la ecuación que prediga este promedio.  Por tanto si se quiere presentar una ecuación para el cálculo de promedio de permeabilidades relativas, es fundamental que tanto la gravedad como la saturación de agua estén incluidas en esta ecuación.Abstract This paper tries to average relative permeability in a way that instead of using different sets of relative permeability curves to different layers, one single set could be used in one single layer, and to get similar production results as if different layers and different relative permeability were used instead. The model to average absolute permeability in a single-phase flow system was used to predict two-phase flow average relative permeability. After running different cases and corroborating that the equation proposed did not match the expectations. The focus of this work was changed in order to explain why the equation was not working. A possible explanation of why the equation is not accurate could be that the equation is not considering the influence of gravity. Gravity plays a very important role in reservoirs. After gas desorption process occurs, free gas migrates to top layers and water migrates to bottom layers. Water saturation could not be excluded from the equation that averages relative permeability curves. The effects of gravity should be considered too, if you want to get an equation to predict production behaviour by using one average equation in a single layer.


Author(s):  
Shahab Shamshirband ◽  
Alireza Baghban ◽  
Jafar Sasanipour ◽  
Masoud Hadipoor

Various empirical models are available to evaluate the temperature effects on relative permeability of the different rock and fluid systems. However, the implementation of limited experimental data points may hinder the applicability of such models to other systems. This study aims to develop new predictive models for kro estimation based on multilayer perceptron artificial neural network (MLP-ANN), adaptive neuro-fuzzy inference system (ANFIS), and least squares support vector machine (LSSVM) approaches. A database comprising of 626 data points applied to the model development. The independent variables are temperature, oil viscosity, water viscosity, water saturation ( ), and the absolute permeability. Each variable covers a wide range of variations which increases models’ potential to be applied in various systems with different characteristics. The doubtful experimental data points excluded using a leverage value approach and a sensitivity analysis carried out to determine the quantitative impact of every individual independent variable on the kro. Statistical error analyses demonstrated the coefficient of determination (R2) values of 0.985, 0.975, and 0.999 for MLP-ANN, ANFIS, and LSSVM, respectively. The comparative study indicated that the LSSVM had the best performance regarding both graphical and statistical error analyses among the newly proposed models and previously reported models in the literature.


2021 ◽  
Vol 11 (3) ◽  
pp. 1101-1122
Author(s):  
Mohammad Abdelfattah Sarhan

AbstractThe present work concerns with the geophysical assessment for the sandstones of Abu Roash C and E members for being potential hydrocarbon reservoirs at Abu Gharadig Field, Western Desert, Egypt. The analysis of seismic data covers Abu Gharadig Field showing ENE–WSW anticline fragmented by NW–SE normal faults. The presence of these structures is due to the dextral wrench corridor that extensively deformed the north area of the Western Desert within Late Cretaceous episode. The examination of well-log data of Abu Gharadig-6 Well revealed that the favourable zone locates between depths 9665–9700 ft (zone I) within Abu Roash “C” Member. The second promising zone in Abu Gharadig-15 Well occurs between depths 9962–9973 ft (zone II) in Abu Roash “E” Member. The quantitative evaluation indicated that zone I has better reservoir quality than zone II since it is characterised by low shale volume (0.01), high effective porosity (0.22), low water saturation (0.14), low bulk volume of water (0.03), higher values of absolute permeability (113 mD), high relative permeability to oil and low water cut, whereas zone II has 0.13 shale volume, 0.16 effective porosity, 0.39 water saturation, 0.06 bulk volume of water, lower values of absolute permeability (27 mD), low relative permeability to oil and relatively high water cut. The obtained results recommended that the drilling efforts should be focused on the sandy levels within Abu Roash C Member (1st priority) and the sand levels within Abu Roash E Member (2nd priority) in Abu Gharadig Basin and its surroundings.


Sign in / Sign up

Export Citation Format

Share Document