Solvothermal Synthesis of Magnesium Oxide-Substituted Hydroxyapatite Nanoparticles as Antibacterial Nanomaterial for Biomedical Applications

2017 ◽  
Vol 381 ◽  
pp. 8-14
Author(s):  
Carlos Paucar Álvarez ◽  
Jeniffer S. Caballero Sarmiento ◽  
Sidónio C. Freitas ◽  
Claudia García

In order to generate bactericidal effects in the oral cavity, several alternatives have been studied, including the use of silver nanoparticles but presents problems such as toxicity and low biocompatibility. From human-inspired systems, the antibacterial efficiency of the hydroxyapatite nanoparticles depends strongly on the type of composites and nanoparticles size. Several types of hydroxyapatite nanoparticles and their derivatives have received much attention for their antibacterial potential effect, including magnesium oxide nanoparticles. The purpose of this research was to produce a biocompatible antimicrobial compound of nanoparticles of hydroxyapatite doped with magnesium oxide to generate antibacterial effects in the oral cavity. The solvothermal method was used to produce hydroxyapatite nanoparticles doped with magnesium oxide. Antibacterial activity of as synthesized nanopowders against cariogenicStreptococcus mutanswas tested by the CLSI disk-diffusion method. As result of this research, hydroxyapatite doped with magnesium nanoparticles (nHAMg) were successfully synthetized by the solvothermal method where in structural characterization indicates magnesium substitution and FTIR analysis gives a broader spectrum of the nHAMg when compared to pure nHA and crystallite size of nHA decreased. Furthermore, results of antibacterial assays showed that nHAMg allow to inhibit the grown ofS. mutansby showing a halo of inhibition around the discs. Moreover, this antibacterial activity is enhanced by the addition of silver ion in an amount below to known toxic concentration, showing a synergetic effect that can further potentiate even more these HA nanoparticles. This work demonstrates that solvothermal method is a promising synthesis way for producing antibacterial hydroxyapatites nanoparticles for biomedical applications such as oral tissue regeneration.

Author(s):  
Elaf Ayad Kadhem ◽  
Miaad Hamzah Zghair ◽  
Sarah , Hussam H. Tizkam, Shoeb Alahmad Salih Mahdi ◽  
Hussam H. Tizkam ◽  
Shoeb Alahmad

magnesium oxide nanoparticles (MgO NPs) were prepared by simple wet chemical method using different calcination temperatures. The prepared NPs were characterized by Electrostatic Discharge (ESD), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). It demonstrates sharp intensive peak with the increase of crystallinty and increase of the size with varying morphologies with respect to increase of calcination temperature. Antibacterial studies were done on gram negative bacteria (E.coli) and gram positive bacteria (S.aureus) by agar disc diffusion method. The zones of inhibitions were found larger for gram positive bacteria than gram negative bacteria, this mean, antibacterial MgO NPs activity more active on gram positive bacteria than gram negative bacteria because of the structural differences. It was found that antibacterial activity of MgO NPs was found it has directly proportional with their concentration.


2021 ◽  
Author(s):  
Filippo Fratini ◽  
Margherita Giusti ◽  
Simone Mancini ◽  
Francesca Pisseri ◽  
Basma Najar ◽  
...  

AbstractStaphylococcus aureus and coagulase-negative staphylococci are among the major causes of mastitis in sheep. The main goal of this research was to determine the in vitro antibacterial activity of several essential oils (EOs, n 30), then five of them were chosen and tested alone and in blends against staphylococci isolates. Five bacteria were isolated from episodes of ovine mastitis (two S. aureus and three S. xylosus). Biochemical and molecular methods were employed to identify the isolates and disk diffusion method was performed to determine their antimicrobial-resistance profile. The relative percentage of the main constituents in the tested essential oils and their blends was detected by GC-EIMS analysis. Antibacterial and bactericidal effectiveness of essential oils and blends were evaluated through minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). All of them showed sensitivity to the used antimicrobials. The EOs with the highest antibacterial activity were those belonging to the Lamiaceae family characterized by high concentrations of thymol, carvacrol and its precursor p-cymene, together with cinnamon EO, rich in cinnamaldehyde. In terms of both MIC and MBC values, the blend composed by Thymus capitatus EO 40%, Cinnamomum zeylanicum EO 20%, Thymus serpyllum EO 20% and Satureja montana EO 20% was found to be the most effective against all the isolates. Some essential oils appear to represent, at least in vitro, a valid tool against ovine mastitis pathogens. Some blends showed a remarkable effectiveness than the single oils, highlighting a synergistic effect in relation to the phytocomplex.


2020 ◽  
Vol 8 (6) ◽  
pp. 179-187
Author(s):  
Titik Taufikurohmah ◽  
Tasha Anandya Tantyani

This Research on the antibacterial and antifungal activity of nanosilver against Neisseria gonorrhoeae and Candida albincas fungi has been carried out. The purpose of this study was to determine antibacterial activity of nanosilver against Neisseria gonorrhoeae and antifungal activity against Candida albincas. Synthesis Nanosilver uses bottom up method and characterized using UV-Vis Spectrophotometer. Nanosliver concentrations used were 30, 40, 50, and 60 ppm. Antibacterial and antifungal activity tests using disk diffusion method. Observations obtained in form of the presence or absence of clear zones formed around paper discs indicate the inhibition of nanosilver on microbial growth. The results of testing the antifungal activity of Candida albicans on nanosilver with concentrations of 30, 40, 50 and 60 ppm resulted in clear zones of 9.73 nm, 11.46 nm, 11.93 nm, and 13 nm with fungal inhibition response categories is medium and strong. The results antibacterial activity test of Neisseria gonorrhoeae on nanosilver with concentrations of 30, 40, 50 and 60 ppm did not show any clear zone around the disc, it showed that nanosilver in this study did not have antibacterial activity against Neisseria gonorrhoeae.


Biomedika ◽  
2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Dr. Muhtadi , MSi. ◽  
Ria Ambarwati ◽  
Ratna Yuliani

Belimbing wuluh (Averrhoa bilimbi Linn.) is a tropical plant that has antibacterial properties. The purpose of this study was to test the antibacterial activity of bark Belimbing wuluh against Klebsiella pneumoniae and Staphylococcus epidermidis and their bioautography. Extraction methods used to research is method maceration with a solvent ethanol 96 %. Fractinations done by method partition liquid-liquid with a separating funnel. Test performed in this research covering identi� cation bacteria, the sensitivity bacteria, antibacterial activity, thin layer chromatography, bioautography. The result of antibacterial activity ethanol extract of disk diffusion method with concentrations 400 μg/disk, 800 μg/disk, 1600 μg/disk is 8±0,5; 10,34±0,58; 12,17±0,76 on Klebsiella pneumoniae, 10,17±0,29; 11±0; 11.5±0 on Staphylococcus epidermidis, n-hexane fraction with concentration 400 μg/disk, 800 μg/disk, 1600 μg/disk is 8,34±0,29; 9,34±0,29; 10,84±0,76 on Klebsialla pneumoniae, 8,5±0,5; 9,34±0,29; 10,67±0,29 on Staphylococcus epidermidis, ethyl acetate fraction with concentration 400 μg/disk, 800 μg/disk, 1600 μg/disk is 9,17±0,29; 10,34±0,29; 11,17±0,29 on Klebsiella pneumoniae and 9,5±0,5; 10,67±0,29; 12,67±1,26 on Staphylococcus epidermidis, ethanol-water fractions with concentration 400 μg/disk, 800 μg/ disk, 1600 μg/disk is 8,17±0,29; 9,17±0,29; 10±0 on Klebsiella pneumoniae, 9±0; 9,67±0,29; 10,34±0,29 on Staphylococcus epidermidis. The TLC show chemical compounds contained in the ethanol extract, n-heksan fraction, ethyl acetate fraction, and ethanol-water fraction is a compound of the saponins, alkaloids, � avonoids and phenolic. Bioautography showed that ethanol extracts, n-heksan faction, ethyl acetate fraction, and etanol-airfaction Belimbing wuluh (Averrhoa bilimbi Linn.) bark have not antibacterial activity because there is no clear area around on plate TLC.Keywords: Belimbing wuluh (Averrhoa bilimbi Linn.), ethanol extract, fractination, antibacterial, bioautogra� .


2020 ◽  
Vol 8 (3) ◽  
pp. 177
Author(s):  
Achmad Syarifudin Noor ◽  
Bawon Triatmoko ◽  
Nuri Nuri

The leaves of kenikir are known to have many benefits, one of which can be used as medicine. Kenikir leaves are reported to have antibacterial activity against the bacteria Salmonella typhi (S.typhi). S. typhi is a bacterium that causes typhoid fever. Typhoid fever is still an endemic disease in Asian countries, especially Indonesia. Typhoid fever became the third largest disease in Indonesia in 2010. The study related to the antibacterial activity of kenikir leaf fraction to S. typhi has never been reported. Therefore, it is necessary to conduct research related to the antibacterial activity of extracts and leaf fractions of kenikir to compare their potential against S. typhi. The study was conducted using the disk diffusion method using 5 series of concentrations namely 5%, 10%, 15%, 20%, and 30%. Tests were carried out on methanol extract, hexane, ethyl acetate, and methanol-water fraction. The results showed that highest inhibition zone diameter is 7,75 mm which is reached by methanol extract. The order of the highest inhibiting zone diameter are extract, hexane, ethyl acetate, and methanol-water fraction.


Author(s):  
Messai Amel

The objective of this work is the synthesis of new quinoline molecules which could have some biological activities. This chapter reported a new approach to the synthesis of some quinoline derivatives. The Baylis-Hillman reaction on 2-methoxy-3-formyl quinoléines derivatives have applied in order to obtain Baylis-Hillman adducts. The products are characterized by FTIR, NMR and X-ray single crystal diffraction .Also, a study of the antibacterial activity of the 3-(2-chloro quinoline)-3-hydroxy-2 methylene propanonitrile products synthesized have been explored. This assessment is made by using the disk diffusion method. The results showed that the 3-(2'-chloroquinoline)-3-hydroxy-2-methylenepropanonitril derivatives present a good antibacterial effectiveness against the strains tested Gram-positive and no antibacterial potency was observed against the stains Gram-negative used in the test.


2012 ◽  
Vol 7 (5) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Alexis Peña ◽  
Luis Rojas ◽  
Rosa Aparicio ◽  
Libia Alarcón ◽  
José Gregorio Baptista ◽  
...  

The essential oil of the leaves of Espeletia nana Cuatrec, obtained by hydrodistillation, was analyzed by GC-MS, which allowed the identification of 24 components, which made up 99.9% of the oil. The most abundant compounds were α-pinene (38.1%), β-pinene (17.2%), myrcene (15.0%), spathulenol (4.2%), bicyclogermacrene (4.0%), α-zingiberene (4.0%), and γhimachalene (3.7%). Antibacterial activity was tested against Gram-positive and Gram-negative bacteria using the agar disk diffusion method. Activity was observed only against Gram-positive bacteria. MIC values were determined for Staphylococcus aureus ATCC 25923(200 μg/mL) and Enterococcus faecalis ATCC 29212 (600 μg/mL).


2018 ◽  
Vol 13 (8) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Mária Pl'uchtová ◽  
Teresa Gervasi ◽  
Qada Benameur ◽  
Vito Pellizzeri ◽  
Daniela Grul'ová ◽  
...  

Genus Mentha presents group of plants which are the most studied in family Lamiaceae. Aboveground parts are used for different purposes in pharmacy, food industry or confectionery. Most important is natural product extracted from leaves - essential oil (EO). The aim of presented experiment was to demonstrate different chemotype and compare antibacterial activity of two Mentha species EO. Plant samples were obtained from various environments – from Slovakia and from Italy. Dominant compounds were determined by GC/MS. The results showed high amount of menthol and menthone in tested Slovak peppermint EO. On the other hand, carvone and 1,8-cineole were determinate as dominant compounds in Italian spearmint EO. The antimicrobial activity of the EO was investigated by disc diffusion and broth micro dilution methods. EO was evaluated for their antibacterial activity against 7 microorganisms: Enterobacter cloacae, Salmonella spp., Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes. The determination results of antibacterial activity by agar disk diffusion method ranged from 7 to 14 mm of the growth inhibition zone. MIC of tested mint EO varied from 0.625 to 2.5 μg/mL. In addition, both EO showed relatively the same antibacterial activity against the selected Gram-negative bacteria. However, there is a variation in the antibacterial activity against Gram-positive bacteria.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582095679
Author(s):  
Muhammad Amjad Chishti ◽  
Ejaz Mohi-Ud-Din ◽  
Shahbaz Ahmad Zakki ◽  
Muhammad Rahil Aslam ◽  
Sheraz Siddiqui ◽  
...  

The present study was conducted to evaluate the antibacterial activity, in vitro and in vivo cytotoxicity, cell viability and safety of Eastern Medicine coded medicinal formulation Eczegone comprising extracts of Azadirachta indica (Azin) , Fumaria indica (Fuin) , Sphaeranthus indicus (Spin) and Lawsonia inermis (Lain). This work also evaluated antibacterial activity of Eczegone formulation having above mentioned plants ethanolic extracts against different bacteria’s by disk diffusion method. In vitro toxicity of Eczegone formulation was investigated by using human skin keratinocytes HaCaT cell line, crystal violet stained cells, and methyl tetrazolium cytotoxicity (MTT) assay. In vivo acute oral and dermal cytotoxicity was determined by using Swiss albino mice and albino rabbits, respectively. The Eczegone formulation showed antibacterial activity against 3 gram negative bacteria including Escherichia coli, Klebsiella pneumonia, Proteus vulgaris and a gram positive Staphylococcus aureus. We didn’t observe any toxic effect of Eczegone formulation on the skin keratinocytes. Furthermore, the Ezcegone formulation was non-irritant according to draize score (OECD TG404, 2002). After rigorous safety evaluation by in vitro and in vivo acute oral and dermal toxicity analysis, we concluded that Eczegone formualtion possessses antibacterial effects and is safe, non-toxic, non-irritant, and the drug would be subjected for further biochemical and clinical studies.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 913 ◽  
Author(s):  
Lei Jiang ◽  
Zhongjie Zhu ◽  
Yanyi Wen ◽  
Shan Ye ◽  
Chen Su ◽  
...  

The development of antimicrobial materials with sustained drug release performance is of great importance. Graphene oxide (GO) is considered to be an ideal drug carrier. In this study, tetracycline hydrochloride (TC) was loaded onto polyethyleneimine-functionalized GO (PG) to fabricate TC/PG nanocomposites. The success of the fabrication was confirmed by zeta potential, TEM, FTIR, and Raman analyses. The TC/PG nanocomposites showed a controlled and sustained drug release behavior, and a pseudo second order kinetic model was employed to illustrate the release mechanism. The antibacterial activity was studied using the disk diffusion method against Escherichia coli and Staphylococcus aureus. The TC/PG nanocomposites exhibited great bacterial inhibition performance. The results indicate that the fabricated TC/PG nanocomposites with effective antibacterial activity have great potential in antibacterial applications.


Sign in / Sign up

Export Citation Format

Share Document