Optimization of Gold Nanoparticle Biosynthesis by Escherichia coli DH5α and its Conjugation with Gentamicin

2015 ◽  
Vol 32 ◽  
pp. 93-105 ◽  
Author(s):  
Hossein Motamedi ◽  
Samaneh Khademi Mazdeh ◽  
Azim Akbarzadeh Khiavi ◽  
Mohammad Reza Mehrabi

Metal nanoparticles are one option for targeted drug delivery. In order to increase antibiotic efficiency and decrease its side effects, antibiotic conjugated nanoparticles have been known as a suitable approach. The aim of this study was optimization of gold nanoparticle biosynthesis byEscherichia coliDH5α and its conjugation with gentamicin. For this purpose gold nanoparticles were biosynthesized from HAuCl4and confirmed by Uv/ Vis, XRD, DLS and SEM. Then the effects of different parameters on optimum conditions for gold nanoparticles production were investigated. The MIC and MBC of gentamicin and its conjugate were investigated againstE. coli,Clostridium perfringensandClostridium botulinum. The results revealed that among different treatments, centrifuge (10000 rpm, 10 min) and sonication are the optimum conditions for gold nanoparticle production with less than 10 nm sizes. Filtration was also the best method for purifying nanoparticles. The conjugated nanoparticles significantly reduced the MIC of gentamicin againstE. coliand also overcame the natural resistance of tested anaerobic bacteria. In conclusion, the optimized method is an effective, inexpensive and environmental friendly method for biosynthesis of gold nanoparticles. Overcoming natural resistance of anaerobic bacteria using antibiotic conjugates with nanoparticles provides hopes for further experiments and in vivo studies.

2014 ◽  
Vol 10 (4) ◽  
pp. 553-561 ◽  
Author(s):  
Samaneh Mazdeh ◽  
Hossein Motamedi ◽  
Azim Khiavi ◽  
Mohammad Mehrabi

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 472
Author(s):  
Qunying Yuan ◽  
Manjula Bomma ◽  
Zhigang Xiao

Phytochelatins, the enzymatic products of phytochelatin synthase, play a principal role in protecting the plants from heavy metal and metalloid toxicity due to their ability to scavenge metal ions. In the present study, we investigated the capacity of soluble intracellular extracts from E. coli cells expressing R. tropici phytochelatin synthase to synthesize gold nanoparticle. We discovered that the reaction mediated by soluble extracts from the recombinant E. coli cells had a higher yield of gold nanoparticles, compared to that from the control cells. The compositional and morphological properties of the gold nanoparticles synthesized by the intracellular extracts from recombinant cells and control cells were similar. In addition, this extracellular nanoparticle synthesis method produced purer gold nanoparticles, avoiding the isolation of nanoparticles from cellular debris when whole cells are used to synthesize nanoparticles. Our results suggested that phytochelatins can improve the efficiency of gold nanoparticle synthesis mediated by bacterial soluble intracellular extracts, and the potential of extracellular nanoparticle synthesis platform for the production of nanoparticles in large quantity and pure form is worth further investigation.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2223
Author(s):  
Manon Dominique ◽  
Nicolas Lucas ◽  
Romain Legrand ◽  
Illona-Marie Bouleté ◽  
Christine Bôle-Feysot ◽  
...  

CLPB (Caseinolytic peptidase B) protein is a conformational mimetic of α-MSH, an anorectic hormone. Previous in vivo studies have already shown the potential effect of CLPB protein on food intake and on the production of peptide YY (PYY) by injection of E. coli wild type (WT) or E. coli ΔClpB. However, until now, no study has shown its direct effect on food intake. Furthermore, this protein can fragment naturally. Therefore, the aim of this study was (i) to evaluate the in vitro effects of CLPB fragments on PYY production; and (ii) to test the in vivo effects of a CLPB fragment sharing molecular mimicry with α-MSH (CLPB25) compared to natural fragments of the CLPB protein (CLPB96). To do that, a primary culture of intestinal mucosal cells from male Sprague–Dawley rats was incubated with proteins extracted from E. coli WT and ΔCLPB after fragmentation with trypsin or after a heat treatment of the CLPB protein. PYY secretion was measured by ELISA. CLPB fragments were analyzed by Western Blot using anti-α-MSH antibodies. In vivo effects of the CLPB protein on food intake were evaluated by intraperitoneal injections in male C57Bl/6 and ob/ob mice using the BioDAQ® system. The natural CLPB96 fragmentation increased PYY production in vitro and significantly decreased cumulative food intake from 2 h in C57Bl/6 and ob/ob mice on the contrary to CLPB25. Therefore, the anorexigenic effect of CLPB is likely the consequence of enhanced PYY secretion.


1999 ◽  
Vol 43 (4) ◽  
pp. 738-744 ◽  
Author(s):  
P. J. Petersen ◽  
N. V. Jacobus ◽  
W. J. Weiss ◽  
P. E. Sum ◽  
R. T. Testa

ABSTRACT The 9-t-butylglycylamido derivative of minocycline (TBG-MINO) is a recently synthesized member of a novel group of antibiotics, the glycylcyclines. This new derivative, like the first glycylcyclines, theN,N-dimethylglycylamido derivative of minocycline and 6-demethyl-6-deoxytetracycline, possesses activity against bacterial isolates containing the two major determinants responsible for tetracycline resistance: ribosomal protection and active efflux. The in vitro activities of TBG-MINO and the comparative agents were evaluated against strains with characterized tetracycline resistance as well as a spectrum of recent clinical aerobic and anaerobic gram-positive and gram-negative bacteria. TBG-MINO, with an MIC range of 0.25 to 0.5 μg/ml, showed good activity against strains expressing tet(M) (ribosomal protection), tet(A), tet(B),tet(C), tet(D), and tet(K) (efflux resistance determinants). TBG-MINO exhibited similar activity against methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant streptococci, and vancomycin-resistant enterococci (MICs at which 90% of strains are inhibited, ≤0.5 μg/ml). TBG-MINO exhibited activity against a wide diversity of gram-negative aerobic and anaerobic bacteria, most of which were less susceptible to tetracycline and minocycline. The in vivo protective effects of TBG-MINO were examined against acute lethal infections in mice caused by Escherichia coli, S. aureus, andStreptococcus pneumoniae isolates. TBG-MINO, administered intravenously, demonstrated efficacy against infections caused byS. aureus including MRSA strains and strains containingtet(K) or tet(M) resistance determinants (median effective doses [ED50s], 0.79 to 2.3 mg/kg of body weight). TBG-MINO demonstrated efficacy against infections caused by tetracycline-sensitive E. coli strains as well asE. coli strains containing either tet(M) or the efflux determinant tet(A), tet(B), ortet(C) (ED50s, 1.5 to 3.5 mg/kg). Overall, TBG-MINO shows antibacterial activity against a wide spectrum of gram-positive and gram-negative aerobic and anaerobic bacteria including strains resistant to other chemotherapeutic agents. The in vivo protective effects, especially against infections caused by resistant bacteria, corresponded with the in vitro activity of TBG-MINO.


2020 ◽  
Vol 22 (8) ◽  
Author(s):  
Barbara De Berardis ◽  
Magda Marchetti ◽  
Anna Risuglia ◽  
Federica Ietto ◽  
Carla Fanizza ◽  
...  

AbstractIn recent years, the introduction of innovative low-cost and large-scale processes for the synthesis of engineered nanoparticles with at least one dimension less than 100 nm has led to countless useful and extensive applications. In this context, gold nanoparticles stimulated a growing interest, due to their peculiar characteristics such as ease of synthesis, chemical stability and optical properties. This stirred the development of numerous applications especially in the biomedical field. Exposure of manufacturers and consumers to industrial products containing nanoparticles poses a potential risk to human health and the environment. Despite this, the precise mechanisms of nanomaterial toxicity have not yet been fully elucidated. It is well known that the three main routes of exposure to nanomaterials are by inhalation, ingestion and through the skin, with inhalation being the most common route of exposure to NPs in the workplace. To provide a complete picture of the impact of inhaled gold nanoparticles on human health, in this article, we review the current knowledge about the physico-chemical characteristics of this nanomaterial, in the size range of 1–100 nm, and its toxicity for pulmonary structures both in vitro and in vivo. Studies comparing the toxic effect of NPs larger than 100 nm (up to 250 nm) are also discussed.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 276 ◽  
Author(s):  
Larisa Koleva ◽  
Elizaveta Bovt ◽  
Fazoil Ataullakhanov ◽  
Elena Sinauridze

Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug’s action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g., magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.


1997 ◽  
Vol 41 (1) ◽  
pp. 49-53 ◽  
Author(s):  
A Ahmed ◽  
M M París ◽  
M Trujillo ◽  
S M Hickey ◽  
L Wubbel ◽  
...  

In vitro and in vivo studies have demonstrated that the bacteriologic efficacy of once-daily aminoglycoside therapy is equivalent to that achieved with conventional multiple daily dosing. The impact of once-daily dosing for meningitis has not been studied. Using the well-characterized rabbit meningitis model, we compared two regimens of the same daily dosage of gentamicin given either once or in three divided doses for 24 or 72 h. The initial 1 h mean cerebrospinal fluid (CSF) gentamicin concentration for animals receiving a single dose (2.9 +/- 1.7 micrograms/ml) was threefold higher than that for the animals receiving multiple doses. The rate of bacterial killing in the first 8 h of treatment was significantly greater for the animals with higher concentrations in their CSF (-0.21 +/- 0.19 versus -0.03 +/- 0.22 log10 CFU/ml/h), suggesting concentration-dependent killing. By 24h, the mean reduction in bacterial titers was similar for the two regimens. In animals treated for 72 h, no differences in bactericidal activity was noted for 24, 48, or 72 h. Gentamicin at two different dosages was administered intracisternally to a separate set of animals to achieve considerably higher CSF gentamicin concentrations. In these animals, the rate of bacterial clearance in the first 8 h (0.52 +/- 0.15 and 0.58 +/- 0.15 log10 CFU/ml/h for the lower and higher dosages, respectively) was significantly greater than that in animals treated intravenously. In conclusion, there is evidence of concentration-dependent killing with gentamicin early in treatment for experimental E. coli meningitis, and once-daily dosing therapy appears to be at least as effective as multiple-dose therapy in reducing bacterial counts in CSF.


1998 ◽  
Vol 66 (7) ◽  
pp. 3059-3065 ◽  
Author(s):  
David E. Johnson ◽  
C. Virginia Lockatell ◽  
Robert G. Russell ◽  
J. Richard Hebel ◽  
Michael D. Island ◽  
...  

ABSTRACT Urinary tract infection, most frequently caused byEscherichia coli, is one of the most common bacterial infections in humans. A vast amount of literature regarding the mechanisms through which E. coli induces pyelonephritis has accumulated. Although cystitis accounts for 95% of visits to physicians for symptoms of urinary tract infections, few in vivo studies have investigated possible differences between E. coli recovered from patients with clinical symptoms of cystitis and that from patients with symptoms of pyelonephritis. Epidemiological studies indicate that cystitis-associated strains appear to differ from pyelonephritis-associated strains in elaboration of some putative virulence factors. With transurethrally challenged mice we studied possible differences using three each of the most virulent pyelonephritis and cystitis E. coli strains in our collection. The results indicate that cystitis strains colonize the bladder more rapidly than do pyelonephritis strains, while the rates of kidney colonization are similar. Cystitis strains colonize the bladder in higher numbers, induce more pronounced histologic changes in the bladder, and are more rapidly eliminated from the mouse urinary tract than pyelonephritis strains. These results provide evidence that cystitis strains differ from pyelonephritis strains in this model, that this model is useful for the study of the uropathogenicity of cystitis strains, and that it would be unwise to use pyelonephritis strains to study putative virulence factors important in the development of cystitis.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1169
Author(s):  
Ștefan Morărașu ◽  
Ștefan Iacob ◽  
Ionuț Tudorancea ◽  
Sorinel Luncă ◽  
Mihail-Gabriel Dimofte

In the field of oncology, a lot of improvements in nanotechnology creates support for better diagnosis and therapeutic opportunities, and due to their physical and chemical properties, gold nanoparticles are highly applicable. We performed a literature review on the studies engaging the usage of gold nanoparticles on murine models with a focus on the type of the carrier, the chemotherapy drug, the target tumoral tissue and outcomes. We identified fifteen studies that fulfilled our search criteria, in which we analyzed the synthesis methods, the most used chemotherapy conjugates of gold nanoparticles in experimental cancer treatment, as well as the improved impact on tumor size and system toxicity. Due to their intrinsic traits, we conclude that chemotherapy conjugates of gold nanoparticles are promising in experimental cancer treatment and may prove to be a safer and improved therapy option than current alternatives.


2019 ◽  
Vol 9 (16) ◽  
pp. 3232 ◽  
Author(s):  
Daria Maccora ◽  
Valentina Dini ◽  
Chiara Battocchio ◽  
Ilaria Fratoddi ◽  
Antonella Cartoni ◽  
...  

In the last decade, many innovative nanodrugs have been developed, as well as many nanoradiocompounds that show amazing features in nuclear imaging and/or radiometabolic therapy. Their potential uses offer a wide range of possibilities. It can be possible to develop nondimensional systems of existing radiopharmaceuticals or build engineered systems that combine a nanoparticle with the radiopharmaceutical, a tracer, and a target molecule, and still develop selective nanodetection systems. This review focuses on recent advances regarding the use of gold nanoparticles and nanorods in nuclear medicine. The up-to-date advancements will be shown concerning preparations with special attention on the dimensions and functionalizations that are most used to attain an enhanced performance of gold engineered nanomaterials. Many ideas are offered regarding recent in vitro and in vivo studies. Finally, the recent clinical trials and applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document