Biocompatibility of Titanium Based Implants with Diamond-Like Carbon Coatings Produced by Plasma Immersion Ion Implantation and Deposition

2007 ◽  
Vol 361-363 ◽  
pp. 677-680 ◽  
Author(s):  
E.T. Uzumaki ◽  
C.S. Lambert ◽  
W.D. Belangero ◽  
Cecília A.C. Zavaglia

A great number of studies have shown that diamond-like carbon (DLC) coatings could be developed for orthopaedic implants, but few articles have been published about in vivo evaluation. In this study, DLC coatings were deposited on titanium alloy (Ti-13Nb-13Zr) implants using the plasma immersion implantation and deposition (PIII-D), and the in vivo biocompatibility of DLC coatings was evaluated into both muscular tissue and femoral condyles of rats. Results indicate that DLC coatings are biocompatible in vivo, and DLC-coated implants were observed directly bonding to bone without any intervening soft tissue layer.

2006 ◽  
Vol 309-311 ◽  
pp. 783-788 ◽  
Author(s):  
E.T. Uzumaki ◽  
C.S. Lambert ◽  
N.A. Batista ◽  
W.D. Belangero ◽  
Cecília A.C. Zavaglia

Diamond-like carbon (DLC) coatings were deposited on titanium alloy (Ti-13Nb-13Zr) by plasma immersion process. DLC-coated Ti alloy and uncoated Ti were investigated in an animal model using the femoral condyles of rats for intervals of 4 and 12 weeks postoperatively. The interface between the implants and bones of the femoral condyles were analysed using scanning electron microscopy (SEM) by backscattering. The results showed that the DLC coatings were well tolerated in both periods.


2020 ◽  
Vol 10 (1) ◽  
pp. 688-698
Author(s):  
Joanna Kowalczyk ◽  
Krystian Milewski ◽  
Monika Madej ◽  
Dariusz Ozimina

AbstractThe purpose of the study was to evaluate the properties of diamond-like carbon DLC coatings with ionic liquids and cutting fluid containing zinc aspartate used as lubricants. The DLC coatings (a–C:H) were deposited onto the 100Cr6 steel substrate by physical vapour deposition PVD. The surface morphology testing, cross section and chemical composition analyses of the DLC coatings were performed using the scanning electron microscope, equipped with an EDS microanalyzer. Surface geometry measurements prior to and after tribological tests were performed on a confocal microscope with interferometry. The tribological tests were carried out on an Anton Paar TRB3 tribometer under technically dry friction and lubricated conditions with an ionic liquid, trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide and 1–butyl– 3–methylimidazolium bis (trifluoromethylsulfonyl) imide and cutting fluid with zinc aspartate. The results show that DLC coatings and ionic liquids can significantly reduce resistance to motion.


Author(s):  
C. C. Wachesk ◽  
S. H. Seabra ◽  
T. A. T. Dos Santos ◽  
V. J. Trava-Airoldi ◽  
A. O. Lobo ◽  
...  

AbstractHybrid diamond-like carbon (DLC) with incorporated titanium dioxide (TiO2) nanoparticle coatings have low friction coefficient, high wear resistance, high hardness, biocompatibility, and high chemical stability. They could be employed to modify biomedical alloys surfaces for numerous applications in biomedical engineering. Here we investigate for the first time the in vivo inflammatory process of DLC coatings with incorporated TiO2 nanoparticles. TiO2-DLC films were grown on AISI 316 stainless-steel substrates using plasma-enhanced chemical vapor deposition. The coated substrates were implanted in CF1 mice peritoneum. The in vivo cytotoxicity and biocompatibility of the samples were analyzed from macrophage lavage. Analysis in the first weeks after implantation could be helpful to evaluate the acute cytotoxicity generated after a possible inflammatory process. The in vivo results showed no inflammatory process. A significant increase in nitric oxide production on the uncoated substrates was confirmed through cytometry, and the coated substrates demonstrated biocompatibility. The presence of TiO2 nanoparticles enhanced the wound healing activity, due to their astringent and antimicrobial properties. DLC and TiO2-DLC coatings were considered biocompatible, and the presence of TiO2 nanoparticles reduced the inflammatory reactions, increasing DLC biocompatibility.


10.14311/398 ◽  
2003 ◽  
Vol 43 (1) ◽  
Author(s):  
D. Palamarchuk ◽  
M. Zoriy ◽  
J. Gurovič ◽  
F. Černý ◽  
S. Konvičková ◽  
...  

DLC (Diamond-Like Carbon) coatings have been suggested as protective surface layers against wear. However hard DLC coatings, especially those of greater thickness, have poor adhesion to substrates. We have used several ways to increase the adhesion of DLC coatings prepared by the PACVD (Plasma Assisted Chemical Vapour Deposition) method on steel substrates. One of these is the DC PACVD method for preparing DLC films.


Author(s):  
H.-S. Zhang ◽  
J. L. Endrino ◽  
A. Anders

The incorporation of silver into the diamond-like carbon (DLC) coatings has shown excellent potential in various applications; therefore the surface and tribological properties of silver-containing DLC thin films deserve to be investigated. In this study we have deposited silver-containing hydrogenated and hydrogen-free DLC coatings by plasma immersion ion implantation and deposition (PIII-D) methods. Atomic force microscopy (AFM) and nano-scratch tests were used to study the surface and tribological properties. The silver incorporation had only slight effects on hydrogenated DLC coatings. However, the incorporation of silver has significant effect on hydrogen-free DLC of smoothing the surface and increasing the surface energy. Those effects have been illustrated and explained in the context of experimental results.


Author(s):  
E. Konca ◽  
Y. T. Cheng ◽  
A. T. Alpas

Magnetron sputtered non-hydrogenated diamond-like carbon (DLC) coatings were tested against Al, Cu and Ti pins using a vacuum pin-on-disc tribometer. The objective was to compare Al, Ti, and Cu transfer to DLC coatings in air (29% RH) and an inert atmosphere (argon). In argon, a significant amount of adhesion and material transfer occurred from the Al and Ti pins to the DLC coating surfaces inflicting severe damage to the coatings. Wear and material transfer of the DLC coating against Cu were negligible in argon. Compared to tests in argon, the tribological performance of the DLC coatings against Al and Ti improved significantly in ambient air. In contrast, the wear rate of the DLC coatings against Cu was much higher in ambient air compared to that in argon.


1997 ◽  
Vol 504 ◽  
Author(s):  
S. R. Kim ◽  
J. S. Song ◽  
Y. J. Choi ◽  
J. H. Kim

ABSTRACTPolycarbonate is one of the most widely used engineering plastics because of its transparency and high impact strength. The poor wear and scratch properties of polycarbonate have limited its application in many fields. In order to improve the wear and scratch properties of polycarbonate we have deposited diamond like carbon (DLC) coatings. The diamond like carbon coatings were made using a high frequency ion beam gun by introducing H2 and CH4 gases. The coatings were characterized with scanning electron microscope, Raman spectroscopy, ellipsometer, and microscratch tester. Polymer hard coating was applied onto the polycarbonate substrate before depositing a diamond like carbon coating to see the effect of interlayer on the system's failure mechanism.


2020 ◽  
Author(s):  
Funsho Olaitan Kolawole ◽  
Shola Kolade Kolawole ◽  
Luis Bernardo Varela ◽  
Adebayo Felix Owa ◽  
Marco Antonio Ramirez ◽  
...  

Diamond-like carbon (DLC) coatings are amorphous carbon material which exhibits typical properties of diamond such as hardness and low coefficient of friction, characterized based on the sp3 bonded carbon and structure. The proportion of sp2 (graphetically) and sp3 (diamond-like) determines the properties of the DLC. This coating can be applied to automobile engine component in an attempt to provide energy efficiency by reducing friction and wear. However, DLC coatings are faced with issues of thermal instability caused by increasing temperature in the combustion engine of a vehicle. Therefore, it became necessary to seek ways of improving this coating to meetup with all tribological requirements that will be able to resist transformational change of the coating as the temperature increases. This chapter discusses the need for diamond-like carbon coatings for automobile engine applications, due to their ultra-low friction coefficient (<0.1) and excellent wear resistance (wear rate ~ 7 x 10−17 m3/N.m). The importance of DLC coatings deposited using PECVD technique, their mechanical and tribological properties at conditions similar to automobile engines would also be discussed. Non-metallic (hydrogen, boron, nitrogen, phosphorus, fluorine and sulfur) or metals (copper, nickel, tungsten, titanium, molybdenum, silicon, chromium and niobium) has been used to improve the thermal stability of DLC coatings. Recently, incorporation of Ag nanoparticles, TiO2 nanoparticles, WO3 nanoparticles and MoO3 nanoparticles into DLC has been used. The novel fabrication of diamond-like carbon coatings incorporated nanoparticles (WO3/MoO3) using PECVD for automobile applications has shown an improvement in the adhesion properties of the DLC coatings. DLC coatings had a critical load of 25 N, while after incorporating with WO3/MoO3 nanoparticles had critical load at 32 N and 39 N respectively.


Nanoscale ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 2863-2870 ◽  
Author(s):  
Hee-Kyung Yang ◽  
Mahdi Khadem ◽  
Oleksiy V. Penkov ◽  
Dae-Eun Kim

The elasticity, damping capacity and as a result durability of diamond-like carbon (DLC) coatings in contact situations were significantly improved through introducing an interlayer of immobilized C60 fullerene clusters.


2020 ◽  
pp. 1-28
Author(s):  
Yanyan Wang ◽  
Yang Wang ◽  
Jia-jie Kang ◽  
Guozheng Ma ◽  
Lina Zhu ◽  
...  

Abstract Diamond-like carbon (DLC) coatings containing 0.7%, 5.8% and 23.3% Ti were deposited via pulsed cathodic arc deposition and magnetron sputtering on AISI 316L stainless steel substrates. The varied Ti content was controlled by setting Ti target current at 3, 5 and 7A. The composition, microstructure, mechanical and tribological properties of Ti-doped DLC (Ti-DLC) coatings were investigated using X-ray photoelectron spectroscopy, Raman spectroscopy, nanoindentation and ball-on-disc tribometer. The results show that TiC formed when Ti content in the coating was higher than 5.8% and the ID/IG ratios increased gradually with the increasing Ti content. Ti-DLC with 0.7 Ti had the highest H/E and H3/E2 ratios and exhibited optimal tribological properties under lubrication, especially when ZDDP was contained in the oil. Furthermore, ZDDP tribofilms played an important role in wear reduction by protecting the rubbing surfaces against adhesion and suppressing the tribo-induced graphitization of DLC coatings.


Sign in / Sign up

Export Citation Format

Share Document