Preparation and Characterization of Transparent Nanocrystalline Ceramics

2008 ◽  
Vol 368-372 ◽  
pp. 402-406 ◽  
Author(s):  
Tie Cheng Lu ◽  
Xiang Hui Chang ◽  
Jie Zhang ◽  
Jian Qi Qi ◽  
Xiang Jie Luo

The transparent nanocrystalline MgAl2O4 spinel ceramics were synthesized at lowtemperature and high-pressure conditions with low-cost nano-sized MgAl2O4 powder. The sintering characteristics of transparent nano-ceramics were investigated at 500~700oC under 2 ~ 5 GPa. The optimal sintering condition for preparing transparent nano-ceramics was determined. The microstructure and phase composition of powder, as well as the microstructures, morphologies, optical properties, densities and mechanical properties of synthetic ceramics were investigated. The grain sizes of the synthetic ceramics are less than 100 nm, far smaller than those of usual transparent micron-ceramics, and the average grain size depends on the pressure and temperature. The transmittance at the saturation plateau can near 80%. The relative densities of all samples are less than 99%, however, they are highly transparent. The toughness, derived from energy dissipation, of the transparent nano-ceramics was investigated and was compared with that of transparent micron-ceramic.

2007 ◽  
Vol 280-283 ◽  
pp. 549-552 ◽  
Author(s):  
Xiang Hui Chang ◽  
Tie Cheng Lu ◽  
Ying Zhang ◽  
Xiang Jie Luo ◽  
Qiang Liu ◽  
...  

The first experimental work to produce transparent MgAl2O4 nano-ceramics was reported in this paper. The sintering characteristics of transparent nano-ceramics were investigated at relatively low temperature (800 ~ 1100°C) under ultrahigh pressure (2 ~ 5 GPa) using hydrostatic equipment. The morphologies and phases of ceramics were observed by means of SEM and XRD, respectively. The grain sizes of the ceramics are shown to be less than one hundred nanometers, far smaller than the sizes of common transparent ceramics. Furthermore, the higher the sintering temperature and pressure are, the greater the extent of densification is. At the same temperature, the higher the pressure is, the smaller the average grain size is. Under the same pressure, the higher the temperature is, the larger the average grain size is. The optimal sintering condition for preparing transparent nano-ceramics was also determined.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
R. Abdel-Karim ◽  
Y. Reda ◽  
M. Muhammed ◽  
S. El-Raghy ◽  
M. Shoeib ◽  
...  

Nanocrystalline Ni-Fe deposits with different composition and grain sizes were fabricated by electrodeposition. Deposits with iron contents in the range from 7 to 31% were obtained by changing the Ni2+/Fe2+mass ratio in the electrolyte. The deposits were found to be nanocrystalline with average grain size in the range 20–30 nm. The surface morphology was found to be dependent on Ni2+/Fe2+mass ratio as well as electroplating time. The grains size decreased with increasing the iron content, especially in case of short time electroplating. Increasing the electroplating time had no significant effect on grain size. The microhardness of the materials followed the regular Hall-Petch relationship with a maximum value (762 Hv) when applying Ni2+/Fe2+mass ratio equal to 9.8.


2003 ◽  
Vol 791 ◽  
Author(s):  
H. A. Calderon ◽  
J. C. Aguilar-Virgen ◽  
F. Cruz-Gandarilla ◽  
M. Umemoto

ABSTRACTProduction of intermetallic materials in the system TiAl3-X (X = Cr, Mn, Fe) has been achieved by means of mechanical milling and sintering techniques. Spark plasma sintering is used since it reduces time at high temperature and inhibits grain growth. The produced materials have grain sizes in the nano and microscale depending on the material and processing variables. The TiAl3-X alloys are formed mostly by the cubic L12 phase. The average grain size ranges between 30 and 50 nm in the as sintered condition. Aging at elevated temperature has been used to promote grain growth. Compression tests have been performed to evaluate mechanical properties as a function of temperature and grain size. In all cases yield stresses higher that 700 MPa are obtained together with a ductility that depends upon temperature and grain size. No ductility is found for the smallest grains sizes tested (30 nm) at room temperature. Above 673 K, these materials show ductility and additionally they present a quasi superplastic behavior at temperatures higher that 973 K. On the other hand ductility can also be developed in the TiAl3-X alloys by inducing grain growth via annealing. Alloys with grains sizes around 500 nm show high ductility and a large density of microcraks after deformation suggesting that the yield strenght becomes lower than the stress to propagate the cracks. In such materials, a considerably high strength is retained up to 873 K.


2016 ◽  
Vol 849 ◽  
pp. 203-208 ◽  
Author(s):  
Gui Hua Su ◽  
Xue Ran Liu ◽  
Zhan Yi Cao

Mg-1Mn-0.6Ce-3Y alloy was prepared by metal mould casting method. The as-cast ingot was homogenized and then hot-extruded by an extrusion ratio of 16:1 at 380 °C. Microstructure and mechanical properties of the as-cast and hot-extruded samples were investigated. The results showed that the as-cast sample mainly consisted of α-Mg, Mg12Ce, and Mg24Y5 phases. The average grain size of the sample homogenized at 380 °C was about 100μm, and it was greatly refined to about 6μm by dynamic recrystallization for the hot-extruded sample. The ultimate tensile strength, 0.2% yield strength and elongation of the hot-extruded sample were 244 MPa, 178 MPa and 37.5%, respectively. They were enhanced by 82%, 197% and 400%, correspondingly compared with those of the as-cast sample. The improvement of the strengths was attributed to the grain refinement, breakup of the precipitates and increase of the dislocation density.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2012 ◽  
Vol 468-471 ◽  
pp. 2124-2127 ◽  
Author(s):  
Shao Feng Zeng ◽  
Kai Huai Yang ◽  
Wen Zhe Chen

Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K. Microstructures and mechanical properties of as-received and ECAP deformed samples were investigated. The microstructure was initially not uniform with a “bimodal” grain size distribution but became increasingly homogeneous with further ECAP passes and the average grain size was considerably reduced from over 26 μm to below 5 μm. The ultimate tensile strength (UTS) decreases clearly after one pass, but increases significantly up to two passes, and then continuously slowly decreases up to six passes, and again increases slightly up to eight passes. In contrast, the uniform elongation increased significantly up to 3 passes, followed by considerable decrease up to 8 passes. These observations may be attributed to combined effects of grain refinement and texture development.


2010 ◽  
Vol 638-642 ◽  
pp. 2389-2394 ◽  
Author(s):  
Masahide Gotoh ◽  
Katsuhiro Seki ◽  
M. Shozu ◽  
Hajime Hirose ◽  
Toshihiko Sasaki

The fine-grained rolling steels NFG600 and the conventional usual rolling steels SM490 were processed by sand paper polishing and mechanical grinding to compare the residual stress generated after processing. The average grain size of NFG600 and SM490 is 3 μm and 15μm respectively. Therefore improvement of mechanical properties for such fine-grained steels is expected, it is important to understand the residual stress state of new fine-grained materials with processing. In this study, multi axial stresses of two kinds of specimens after polishing and grinding were measured by three kinds of analysis methods including cos-ψ method. As a result, as for σ33, the stress of NFG was compression, though that of SM490 was tension.


2007 ◽  
Vol 558-559 ◽  
pp. 1283-1294 ◽  
Author(s):  
Cheng Xu ◽  
Z. Horita ◽  
Terence G. Langdon

It is now well-established that processing through the application of severe plastic deformation (SPD) leads to a significant reduction in the grain size of a wide range of metallic materials. This paper examines the fabrication of ultrafine-grained materials using high-pressure torsion (HPT) where this process is attractive because it leads to exceptional grain refinement with grain sizes that often lie in the nanometer or submicrometer ranges. Two aspects of HPT are examined. First, processing by HPT is usually confined to samples in the form of very thin disks but recent experiments demonstrate the potential for extending HPT also to bulk samples. Second, since the strains imposed in HPT vary with the distance from the center of the disk, it is important to examine the development of inhomogeneities in disk samples processed by HPT.


Sign in / Sign up

Export Citation Format

Share Document