Structural Characteristics and Ferroelectric Properties of Bismuth-Based Compound Thin Films Crystallized by Hot Isostatic Pressing

2009 ◽  
Vol 421-422 ◽  
pp. 143-147
Author(s):  
Masafumi Kobune ◽  
Hideto Tada ◽  
Hisashi Oshima ◽  
Daisuke Horii ◽  
Akihiro Tamura ◽  
...  

After depositing amorphous (Bi0.5La0.5)(Ni0.5Ti0.5)O3 (BLNT) films on BLNT seed layer/Pt(100)/ MgO(100) substrates by room-temperature sputtering, the crystallization of the perovskite-struc- tured films has been tried by hot isostatic pressing (HIP). The samples with a single-phase perovskite structure HIP-treated at 800°C for 1 h under gas pressures of 0.51.0 MPa showed good crystallinity of  = 0.960.98 without accompanying the precipitation of the secondary phase. It was confirmed that a large root mean square roughness value of 44.2 nm for the sample HIP-treated at 800°C for 1 h under gas pressure of 0.1 MPa is due to innumerable Bi4Ti3O12-like rod-shaped grains precipitated in the film surface, based on atomic force microscopy. It is shown that the BLNT sample HIP-treated at 800°C for 1 h under gas pressure of 1.0 MPa exhibits the best hysteresis loop shape with a remanent polarization of Pr = 5 C/cm2 and a coercive field of Ec = 150 kV/cm of the six.

2013 ◽  
Vol 832 ◽  
pp. 51-55
Author(s):  
M. Sobri ◽  
A. Shuhaimi ◽  
K.M. Hakim ◽  
M.H. Mamat ◽  
S. Najwa ◽  
...  

Nickel (Ni) / indium tin oxide (ITO) nanostructures were deposited on silicon (111) substrate by RF magnetron sputtering using a nickel target and metallic alloy target (In-Sn, 90%-10%). The post-deposition annealing has been done for Ni/ITO films in air and the effect of annealing temperature on the surface morphology of ITO films was studied. It has been found that the annealing temperatures increase the film surface roughness in Ni/ITO structure. At annealing temperature of 600°C, AFM analysis reveals the highest root mean square roughness, peak to valley and thickness value of 2.598 nm, 59.115 nm, and 11.358 nm, respectively. Watershed analysis on AFM images show that the numbers of grain boundaries in Ni/ITO are reduced when annealing temperature is increased to higher temperatures.


2000 ◽  
Vol 629 ◽  
Author(s):  
Jonathan S. Schulze ◽  
Timothy P. Lodge ◽  
Christopher W. Macosko

ABSTRACTThe reaction of perdeuterated amino-terminal polystyrene (dPS-NH2) with anhydrideterminal poly(methyl methacrylate) (PMMA-anh) at a PS/PMMA interface has been observed with forward recoil spectrometry (FRES). Bilayer samples were constructed by placing thin films of PS containing ∼8.5 wt % dPS-NH2 on a PMMA-anh layer. Significant reaction was observed only after annealing the samples at 174°C for several hours, a time scale at least two orders of magnitude greater than the time required for the dPS-NH2 chains to diffuse through the bulk PS layer. The topography of the interfacial region as copolymer formed was measured using atomic force microscopy (AFM). Roughening of the PS/PMMA interface was observed to varying degrees in all annealed samples. Furthermore, the extent of this roughening was found to depend on the PS matrix molecular weight. Reaction in the samples with a high molecular weight PS matrix resulted in a root mean square roughness approximately equal to the radius of gyration Rg of the copolymer. However, approximately twice as much roughening was observed in the low molecular weight PS matrix. This study reveals how the molecular weight of one of the phases can affect the rate of reaction at a polymer/polymer interface.


Cerâmica ◽  
2002 ◽  
Vol 48 (305) ◽  
pp. 38-42 ◽  
Author(s):  
M. I. B. Bernardi ◽  
E. J. H. Lee ◽  
P. N. Lisboa-Filho ◽  
E. R. Leite ◽  
E. Longo ◽  
...  

The synthesis of TiO2 thin films was carried out by the Organometallic Chemical Vapor Deposition (MOCVD) method. The influence of deposition parameters used during growth on the final structural characteristics was studied. A combination of the following experimental parameters was studied: temperature of the organometallic bath, deposition time, and temperature and substrate type. The high influence of those parameters on the final thin film microstructure was analyzed by scanning electron microscopy with electron dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction.


2015 ◽  
Vol 830-831 ◽  
pp. 589-591 ◽  
Author(s):  
Hakikat Sharma ◽  
N.S. Negi

In the present study we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4and Ni0.94Cu0.05Co0.01Fe2O4thin films by metallo-organic decomposition method (MOD) using spin coating technique. The samples were characterized by XRD. XRD patterns of thin films confirmed the formation of cubic spinel structure without any secondary phase. For microstructural analysis we characterized samples by Scanning Probe Microscope (SPM). From Atomic force microscopy (AFM), we analyzed surface morphology, calculated grain size, roughness and porosity. It has been found that grain size and roughness affected by Cu, Co substitution. After this we carried out magnetic force microscopy (MFM) on the samples. Effect of substitution on magnetic grains was observed from MFM.


2009 ◽  
Vol 13 (07) ◽  
pp. 774-778 ◽  
Author(s):  
Byung-Soon Kim ◽  
Young-A Son

In this study, self-assembled alternating film using poly(diallyldimethylammonium chloride) (PDDAC) and meso-tetrakis(4-carboxyphenyl)porphyrin (MTCP) was prepared as a multilayer deposition on glass substrate. This preparation technique for dye deposition may provide new feasibilities to achieve the manufacture of ultrathin films for nanotechnology application. The deposition films were characterized by UV-vis spectrophotometer and Atomic Force Microscopy (AFM) analysis. The results of UV-vis spectra showed that the absorbance characteristic of the multilayer films linearly increased with an increased number of PDDAC and MTCP bilayers. AFM analysis showed the film surface was relatively uniform and the progressive growth of layers was determined.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012033
Author(s):  
Abubaker.S. Mohammed

Abstract In this article, the quaternary compound Cu2MSnS4 was prepared in a simple and inexpensive approach, where M is the iron (Fe) and zinc (Zn) atoms by the spin coating method on a glass substrate at room temperature (RT), as a result of replacing Zn atoms by Fe. Quaternary Cu2ZnSnS4 (CZTS) and Cu2FeSrS4 (CFTS) structural and optical properties have been studied successfully. The material has been identified by X-ray diffraction, and it was discovered that CZTS has a polycrystalline Tetragonal (kesterite) structure, whereas CFTS has a Tetragonal (stannite) structure. A reduction in the full width half maximum (FWHM) of the preferred plane implies a high degree of crystallization. The structural properties of the film surface, such as grain size and roughness, were studied by Atomic force microscopy (AFM). The results explain an increase in nanoparticle size and surface roughness when Fe is substituted by Zn in the CZTS structure. The absorption coefficient values of all designed compounds in visible regions are greater than 104/cm, and the results show that the absorbance coefficient increases with Fe add. The CZTS films showed an energy gap of 1.88 eV, and this value became 1.69 eV with substituted Fe instead of Zn.


1997 ◽  
Vol 12 (8) ◽  
pp. 1942-1945 ◽  
Author(s):  
H. J. Gao ◽  
H. X. Zhang ◽  
Z. Q. Xue ◽  
S. J. Pang

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) investigation of tetracyanoquinodimethane (TCNQ) and the related C60-TCNQ thin films is presented. Periodic molecular chains of the TCNQ on highly oriented pyrolytic graphite (HOPG) substrates were imaged, which demonstrated that the crystalline (001) plane was parallel to the substrate. For the C60-TCNQ thin films, we found that there were grains on the film surface. STM images within the grain revealed that the well-ordered rows and terraces, and the parallel rows in different grains were generally not in the same orientation. Moreover, the grain boundary was also observed. In addition, AFM was employed to modify the organic TCNQ film surface for the application of this type of materials to information recording and storage at the nanometer scale. The nanometer holes were successfully created on the TCNQ thin film by the AFM.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Yago Soares ◽  
Elyff Cargnin ◽  
Mônica Naccache ◽  
Ricardo Andrade

This work studies the influence of the concentration and oxidation degree on the rheological behavior of graphene oxide (GO) nanosheets dispersed on polyethylene glycol (PEG). The rheological characterization was fulfilled in shear flow through rotational rheometry measurements, in steady, transient and oscillatory regimes. Graphene oxide was prepared by chemical exfoliation of graphite using the modified Hummers method. The morphological and structural characteristics originating from the synthesis were analyzed by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and atomic force microscopy. It is shown that higher oxidation times increase the functional groups, which leads to a higher dispersion and exfoliation of GO sheets in the PEG. Moreover, the addition of GO in a PEG solution results in significant growth of the suspension viscosity, and a change of the fluid behavior from Newtonian to pseudoplastic. This effect is related to the concentration and oxidation level of the obtained GO particles. The results obtained aim to contribute towards the understanding of the interactions between the GO and the polymeric liquid matrix, and their influence on the suspension rheological behavior.


Sign in / Sign up

Export Citation Format

Share Document