Study on Preparation and Application Performance of P-Type Conducting SnO2 Ceramic Target

2014 ◽  
Vol 599 ◽  
pp. 338-345 ◽  
Author(s):  
Jia Miao Ni ◽  
Xiu Jian Zhao ◽  
Bin Bin Li ◽  
Min Dong Zheng ◽  
Ting Peng

To obtain high quality SnO2 film, high conductivity and high quality SnO2 target should be obtained first. In this paper, high-conductivity Sb: SnO2 (ATO) ceramic targets were fabricated using SnO2, Sb2O3 powder as raw material. The chemical composition and morphology of SnO2 targets were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The effect of different forming pressure on the morphology and electrical properties of targets were studied in our paper. The results show that molding pressure has a significant impact on the density of ATO targets and performance during sintering process. When molding pressure is 15 Mpa, the target has the minimum resistivity for 2.38 Ωcm. XRD results show that ATO target possess tetragonal rutile structure with the preferred orientation of (101). XPS indicate that the chemical state of Sn element in the target is Sn4+ and that of Sb is Sb3+. In addition, the shrinkage rate of conductive SnO2 target is 10.34% so that target can be used to sputtering in the magnetron sputter. The preparation process is simple and cost of SnO2 target is low. The transparent conductive SnO2 thin film was successfully deposited on glass substrate with good performance of high hole concentration and low resistivity of 3.334×1019 cm-3 and 3.588 Ω·cm, respectively. The average transmission of p-type SnO2 films was above 80% in the visible light range.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Huu Phuc Dang ◽  
Quang Ho Luc ◽  
Tran Le ◽  
Van Hieu Le

Transparent Sb-doped tin oxide (ATO) thin films were fabricated on quartz glass substrates via a mixed (SnO2+ Sb2O3) ceramic target using direct current (DC) magnetron sputtering in ambient Ar gas at a working pressure of 2 × 10−3 torr. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Hall-effect, and UV-vis spectra measurements were performed to characterize the deposited films. The substrate temperature of the films was investigated in two ways: (1) films were annealed in Ar ambient gas after being deposited at room temperature or (2) they were deposited directly at different temperatures. The first process for fabricating the ATO films was found to be easier than the second process. The deposited films showed p-type electrical properties, a polycrystalline tetragonal rutile structure, and their average transmittance was greater than 80% in the visible light range at the optimum annealing temperature of 500°C. The best electrical properties of the film were obtained on a 10 wt% Sb2O3-doped SnO2target with a resistivity, hole concentration, and Hall mobility of 0.55 Ω·cm, 1.2 × 1019 cm−3, and 0.54 cm2V−1s−1, respectively.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 727 ◽  
Author(s):  
Yuzhenghan He ◽  
Xiaoyan Shi ◽  
Kyle Chen ◽  
Xiaohong Yang ◽  
Jun Chen

Gas sensors are an important part of smart homes in the era of the Internet of Things. In this work, we studied Ti-doped P-type WO3 thin films for liquefied petroleum gas (LPG) sensors. Ti-doped tungsten oxide films were deposited on glass substrates by direct current reactive magnetron sputtering from a W-Ti alloy target at room temperature. After annealing at 450 °C in N2 ambient for 60 min, p-type Ti-doped WO3 was achieved for the first time. The measurement of the room temperature Hall-effect shows that the film has a resistivity of 5.223 × 103 Ωcm, a hole concentration of 9.227 × 1012 cm−3, and mobility of 1.295 × 102 cm2V−1s−1. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses reveal that the substitution of W6+ with Ti4+ resulted in p-type conductance. The scanning electron microscope (SEM) images show that the films consist of densely packed nanoparticles. The transmittance of the p-type films is between 72% and 84% in the visible spectra and the optical bandgap is 3.28 eV. The resistance increased when the films were exposed to the reducing gas of liquefied petroleum gas, further confirming the p-type conduction of the films. The p-type films have a quick response and recovery behavior to LPG.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 819 ◽  
Author(s):  
Wencan Li ◽  
Jiao Cui ◽  
Weiwei Wang ◽  
Dahuai Zheng ◽  
Longfei Jia ◽  
...  

Nitrogen-doped lithium niobate (LiNbO3:N) thin films were successfully fabricated on a Si-substrate using a nitrogen plasma beam supplied through a radio-frequency plasma apparatus as a dopant source via a pulsed laser deposition (PLD). The films were then characterized using X-Ray Diffraction (XRD) as polycrystalline with the predominant orientations of (012) and (104). The perfect surface appearance of the film was investigated by atomic force microscopy and Hall-effect measurements revealed a rare p-type conductivity in the LiNbO3:N thin film. The hole concentration was 7.31 × 1015 cm−3 with a field-effect mobility of 266 cm2V−1s−1. X-ray Photoelectron Spectroscopy (XPS) indicated that the atom content of nitrogen was 0.87%; N atoms were probably substituted for O sites, which contributed to the p-type conductivity. The realization of p-type LiNbO3:N thin films grown on the Si substrate lead to improvements in the manufacturing of novel optoelectronic devices.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4483
Author(s):  
Yuyingnan Liu ◽  
Xinrui Xu ◽  
Bin Qu ◽  
Xiaofeng Liu ◽  
Weiming Yi ◽  
...  

In this study, corn cob was used as raw material and modified methods employing KOH and KMnO4 were used to prepare activated carbon with high adsorption capacity for mercury ions. Experiments on the effects of different influencing factors on the adsorption of mercury ions were undertaken. The results showed that when modified with KOH, the optimal adsorption time was 120 min, the optimum pH was 4; when modified with KMnO4, the optimal adsorption time was 60 min, the optimal pH was 3, and the optimal amount of adsorbent and the initial concentration were both 0.40 g/L and 100 mg/L under both modified conditions. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir model. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential characterization results showed that the adsorption process is mainly physical adsorption, surface complexation and ion exchange.


1990 ◽  
Vol 209 ◽  
Author(s):  
Yoshihisa Fujisaki ◽  
Sumiko Sakai ◽  
Saburo Ataka ◽  
Kenji Shibata

ABSTRACTHigh quality GaAs/SiO2 MIS( Metal Insulator Semiconductor ) diodes were fabricated using (NH4)2S treatment and photo-assisted CVD( Chemical Vapor Deposition ). The density of states at the GaAs and SiO2 interface is the order of 1011 cm-2eV-1 throughout the forbidden energy range, which is smaller by the order of two than that of the MIS devices made by the conventional CVD process. The mechanism attributable to the interface improvement was investigated through XPS( X-ray Photoelectron Spectroscopy ) analyses.


1998 ◽  
Vol 76 (11) ◽  
pp. 1707-1716 ◽  
Author(s):  
I Coulthard ◽  
S Degen ◽  
Y -J Zhu ◽  
T K Sham

Utilizing porous silicon as a reducing agent and a substrate, gold complex ions [AuCl4]- were reduced from aqueous solution to produce nanoparticles of gold upon the surface of porous silicon. Scanning electron microscopy (SEM) was utilized to study the morphology of the porous silicon layers and the deposits of gold nanoparticles. It is found that preparation conditions have a profound effect on the morphology of the deposits, especially on porous silicon prepared from a p-type wafer. The gold nanoparticles, varying from micrometric aggregates of clusters of the order of 10 nm, to a distribution of nearly spherical clusters of the order of 10 nm, to strings of ~10 nm were observed and compared to bulk gold metal using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). These techniques confirm and complement the SEM findings. The potential for this reductive deposition technique is noted.Key words: gold nanostructures, reductive deposition, porous silicon, morphology, X-ray spectroscopy.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


2021 ◽  
Vol 1037 ◽  
pp. 743-750
Author(s):  
Ivan Y. Burlov ◽  
Dmitriy A. Zorin ◽  
Yury R. Krivoborodov

In this work, studies have been carried out to replace bauxite with aluminate slags. Compounds of raw mixtures without use of fossil aluminate materials with different gypsum content have been developed. Instability of assimilation of anhydrite into calcium sulphoaluminate has been established. X-ray phase analysis has shown a weak dependence of increase in the firing temperature and increase in the yield of the main mineral C3A3·CŜ. Results of the study allow us to conclude that it is possible to obtain high-quality calcium sulphoaluminate (SAC) based on technogenic aluminate raw material.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 90 ◽  
Author(s):  
Wangsheng Chen ◽  
Fali Hu ◽  
Linbo Qin ◽  
Jun Han ◽  
Bo Zhao ◽  
...  

A sulfated sintered ore catalyst (SSOC) was prepared to improve the denitration performance of the sintered ore catalyst (SOC). The catalysts were characterized by X-ray Fluorescence Spectrometry (XRF), Brunauer–Emmett–Teller (BET) analyzer, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared spectroscopy (DRIFTS) to understand the NH3-selective catalytic reduction (SCR) reaction mechanism. Moreover, the denitration performance and stability of SSOC were also investigated. The experimental results indicated that there were more Brønsted acid sites at the surface of SSOC after the treatment by sulfuric acid, which lead to the enhancement of the adsorption capacity of NH3 and NO. Meanwhile, Lewis acid sites were also observed at the SSOC surface. The reaction between −NH2, NH 4 + and NO (E-R mechanism) and the reaction of the coordinated ammonia with the adsorbed NO2 (L-H mechanism) were attributed to NOx reduction. The maximum denitration efficiency over the SSOC, which was about 92%, occurred at 300 °C, with a 1.0 NH3/NO ratio, and 5000 h−1 gas hourly space velocity (GHSV).


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1341 ◽  
Author(s):  
Ruiqi Wang ◽  
Duanyang Li ◽  
Hailong Wang ◽  
Chenglun Liu ◽  
Longjun Xu

S-doped Bi2MoO6 nanosheets were successfully synthesized by a simple hydrothermal method. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), N2 adsorption–desorption isotherms, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), elemental mapping spectroscopy, photoluminescence spectra (PL), X-ray photoelectron spectroscopy (XPS), and UV-visible diffused reflectance spectra (UV-vis DRS). The photo-electrochemical performance of the samples was investigated via an electrochemical workstation. The S-doped Bi2MoO6 nanosheets exhibited enhanced photocatalytic activity under visible light irradiation. The photo-degradation rate of Rhodamine B (RhB) by S-doped Bi2MoO6 (1 wt%) reached 97% after 60 min, which was higher than that of the pure Bi2MoO6 and other S-doped products. The degradation rate of the recovered S-doped Bi2MoO6 (1 wt%) was still nearly 90% in the third cycle, indicating an excellent stability of the catalyst. The radical-capture experiments confirmed that superoxide radicals (·O2−) and holes (h+) were the main active substances in the photocatalytic degradation of RhB by S-doped Bi2MoO6.


Sign in / Sign up

Export Citation Format

Share Document