Research on the Mechanical Properties and Segregation Behavior of Pb-Al Alloys

2018 ◽  
Vol 775 ◽  
pp. 459-465 ◽  
Author(s):  
Zhi Cheng Lu ◽  
Zhen Lin Liu ◽  
Dan Wu ◽  
Yong Liang Li ◽  
Wei Shen ◽  
...  

In this paper, the effect of Al content on the recrystallization behavior and mechanical properties of Pb-Al alloys were studied. The segregation behavior of Al in Pb-Al alloy was investigated. Moreover, the microstructures and precipitates of the alloys were also studied. The results show that the addition of Al can affect the recrystallization behavior of lead and improve its tensile strength. The recrystallization grains are effectively refined with the addition of 0.05%Al and the tensile strength increases obviously. However, the Al-rich phase grows significantly and its refinement effect is reduced with further increasing the Al content, thus, the tensile strength decreases. The mechanical stirring can effectively decrease the segregation degree of Al in Pb-Al alloys, but the yield of Al reduces. After the mechanical stirring, the sizes of Al phases decrease and theirs distribution is more uniform.

2014 ◽  
Vol 496-500 ◽  
pp. 336-339
Author(s):  
Nisachon Khunbanterng ◽  
Sirikul Wisutmethangoon ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin

Semi-solid 2024 Al alloys with strontium (Sr) addition of 0.15 wt% and 0.3 wt% were prepared by Gas Induced Semi-Solid (GISS) process. Effect of Sr addition on the microstructure and mechanical properties of the semi-solid 2024 alloy was investigated. It was found that the tensile strength and % elongation of the T6 heat treated alloy with the Sr addition were higher than those without Sr addition owing to the reduction of Mg2Si phase formation. The semi-solid 2024 Al alloy with 0.15%Sr addition obtained the average highest tensile strength of 382 MPa and elongation of 6.45%.


2004 ◽  
Vol 821 ◽  
Author(s):  
Yonghao Zhao ◽  
Xiaozhou Liao ◽  
Ruslan Z. Valiev ◽  
Yuntian T. Zhu

AbstractEqual-channel angular pressing (ECAP) processed ultrafine grained (UFG) and coarse grained (CG) 7075 Al alloys were treated by natural aging and T651 temper (annealed at 120 °C for 48 h in Ar atmosphere), respectively. Mechanical tests showed that for the UFG sample, the natural aging resulted in the highest strength (the ultimate tensile strength is 720 MPa). In contrast, for the CG sample, the T651 treatment resulted in a higher strength (the ultimate strength is 590 MPa) than the natural aging (530 MPa). Microstructural analyses indicated that the enhanced strength of the T651 treated CG sample was mainly caused by high densities of G- P zones and metastable η' precipitates. The enhanced strength of the naturally aged UFG sample was mainly caused by the high densities of G-P zones and dislocations. Upon T651 treatment, the dislocation density of the UFG sample deceased significantly, overcompensating the precipitation strengthening.


2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


2020 ◽  
Vol 67 (1) ◽  
pp. 101-105
Author(s):  
Yongxin Zhou ◽  
Qian Li ◽  
Zhiguo Xing ◽  
Renze Zhou ◽  
Zhenhua Huang ◽  
...  

Purpose This paper aims to investigate the effect of aluminum addition on the microstructure and mechanical properties of Mg-8Gd-4Y-1Zn alloy. Design/methodology/approach Mg-8Gd-4Y-1Zn-xAl (x = 0, 0.5, 1.0, 1.5, 2.0 Wt.%) alloys were prepared by the conventional gravity casting technology, and then microstructures, phase composition and mechanical properties were investigated by material characterization method, systematically. Findings Results show that the as-cast microstructure of Mg-8Gd-4Y-1Zn alloy mainly consists of a-Mg matrix as well as Mg12REZn (18 R LPSO structure), and island-like Mg3(RE, Zn) phase is distributed at the grain boundary. The addition of a small amount of Al (0.5 Wt.%) can decrease the content of island-like Mg3(RE, Zn) phase, but significantly increase the content of long-period stacking ordered (LPSO) structure, resulting in the improvement of both tensile strength and elongation of Mg-8Gd-4Y-1Zn alloy. However, the addition of excessive Al will consume Re element and decrease the amount of LPSO structure, leading to the decrease of tensile properties. When the content of Al is 0.5 Wt.%, the tensile strength and elongation are 225 MPa and 9.0% of Mg-8Gd-4Y-1Zn alloy, which are 14% and 29% higher than that of Mg-8Gd-4Y-1Zn alloy, respectively. Originality/value Adding aluminum to Mg-8Gd-4Y-1Zn alloy strengthens its mechanical properties. And the effect of Al content on the alloy strengthening. The formation mechanism of LPSO structure with different aluminum content was revealed.


2014 ◽  
Vol 900 ◽  
pp. 141-145 ◽  
Author(s):  
Can Feng Fang ◽  
Guang Xu Liu ◽  
Ling Gang Meng ◽  
Xing Guo Zhang

The effects of in-situ TiB2 particle fabricated from Al-Ti-B system via the self-propagating high-temperature synthesis (SHS) reaction technology on microstructure and mechanical properties of Mg-Sn-Zn-Al alloy were investigated. The results indicate that the size of the Mg2Sn and α-Mg+Mg32(Al,Zn)49 phase becomes coarser with the increasing content of Al-Ti-B preform, meanwhile the amount of eutectic α-Mg+Mg32(Al,Zn)49 phase increases too. The addition of Al-Ti-B is favorable toward promoting the strength of composites, but deteriorates elongation. The resulting as-extruded composite material with 4 wt.% Al-Ti-B preform exhibits good overall mechanical properties with an ultimate tensile strength of 291 MPa and an elongation over 2 %.


2019 ◽  
Vol 25 (4) ◽  
pp. 744-751 ◽  
Author(s):  
Xiaomiao Niu ◽  
Hongyao Shen ◽  
Guanhua Xu ◽  
Linchu Zhang ◽  
Jianzhong Fu ◽  
...  

Purpose Mg-Al powder mixture was used to manufacture Mg-Al alloy by laser powder bed fusion (LPBF) process. This study aims to investigate the influence of initial Al content and processing parameters on the formability, microstructure and consequent mechanical properties of the laser powder bed fused (LPBFed) component. Design/methodology/approach In this study, Al powder with different weight ratio ranged from 3 to 9 per cent was mixed with pure Mg powder, and the powder mixture was processed using different LPBF parameters. Microstructure and compressive properties of the LPBFed components were examined. Findings It was found that the presence of Al significantly modified the microstructure and improved the mechanical properties of the LPBFed components. Higher volume of ß-Al12Mg17 precipitates was produced at higher initial Al content and higher laser energy density. For this reason, the a-Mg was significantly refined and the compressive strength was improved. The highest yield compressive strength achieved was 279 MPa when using Mg-9 Wt. % Al mixture. Originality/value This work demonstrates that LPBF of Mg-Al powder mixture was a viable way to additively manufacture Mg-Al alloy. Both Al content and processing parameters can be modified to control the microstructure and mechanical properties of the LPBFed components.


2019 ◽  
Vol 961 ◽  
pp. 118-125
Author(s):  
Muhammad Syukron ◽  
Zuhailawati Hussein ◽  
Abu Seman Anasyida

The combination of heat treatment, addition of grain refiner and ECAP processing is used to improve mechanical properties and wear resistance of A356 Al alloys with 1.5 wt.% TiB2. The alloys were grouped into as-cast and pre-ECAP annealing. The alloys were characterized with hardness and wear testing, optical microscopy and SEM. The ECAP processing was done through BA route for 4 passes and it improved hardness, distribution of TiB2 and Si particles in the aluminium matrix and increased wear resitance of pre-ECAP annealing specimen.


Sign in / Sign up

Export Citation Format

Share Document