Using Activated Diatomite as Adsorbent for Treatment of Arsenic Contaminated Water

2020 ◽  
Vol 850 ◽  
pp. 16-21
Author(s):  
Hoc Thang Nguyen ◽  
Phong Thanh Dang

Diatomite or diatomaceous earth (DE) is one of materials which can be used as an adsorbent to treat heavy metal ions from waste water, even there are many factories used it to clean the water for drinking. However, natural DE (raw DE) has very low adsorption capacity because of low specific surface area. In this work, natural DE from Lam Dong province, Viet Nam was demagnetized to remove iron and activated by HCl solution for 90 minutes with concentration of 10% at room condition. Adsorbent capacity was evaluated using As solution and the results show that the activated diatomite has adsorption capacity three times higher than that of raw DE, and the specific surface area of activated diatomite was increased 47.5% with the main chemical composition of 90.8% SiO2 and high porosity

2018 ◽  
Vol 55 (1B) ◽  
pp. 109 ◽  
Author(s):  
Nguyen Huu Hieu

In this work, graphene oxide–manganese ferrite (GO–MnFe2O4) magnetic nanohybrids were synthesized by co–precipitation technique. The adsorption properties of GO–MnFe2O4 for efficient removal of Cd(II) from contaminated water were investigated. The nanohybrids were characterized by using X–ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller specific surface area (BET), transmission electron microscopy, and vibrating sample magnetometry (VSM). VSM result showed the high saturation magnetization values Ms = 27.1 emu/g, the BET specific surface area was 84.236 m2/g. Adsorption experiments were carried out to evaluate the adsorption capacity of the GO–MnFe2O4 magnetic nanohybrids and compared with MnFe2O4 nanoparticles and GO nanosheets. The equilibrium time for adsorption of Cd(II) onto the nanohybrids was 240 minutes. Experimental adsorption data were well–fitted to the Langmuir isotherm and the pseudo–second–order kinetic equation. The experimental results showed that adsorption of Cd(II) using GO–MnFe2O4 magnetic nanohybrids was better than MnFe2O4 and GO with a maximum adsorption capacity of 121.951 mg/g at pH 8.  Reusability, ease of magnetic separation, high removal capacity, and fast kinetics lead the GO–MnFe2O4 nanohybrids to be promising adsorbents for removal heavy metals from contaminated water.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hoang Thu Ha ◽  
Pham Tuan Phong ◽  
Tran Dinh Minh

This work reveals the As(V) adsorption behaviors onto iron oxide (Fe3O4) nanoparticles modified activated carbon (AC), originally developed from biochar (BC), as a green adsorbent denoted by FAC. Since FAC has abundant surface functional groups and a desired porous structure that is favorable for the removal of As(V) in contaminated water, FAC has greatly enhanced the As(V) adsorption capacity of the original BC. Various methods were employed to characterize the FAC characteristics and adsorption mechanism, including pHpzc determination, BET specific surface area, elemental analysis (EA), and scanning electron microscopy (SEM). Results show that the AC surface was successfully modified by iron oxide nanoparticles, enhancing the porosity and specific surface area of original adsorbent. Batch adsorption tests indicated a well-fitted Langmuir model and pseudo-second-order model for As(V) adsorption. Additionally, the highest adsorption capacity (Qmax = 32.57 mg/g) by FAC was higher than previously reported literature reviews. Until now, no article was conducted to research the effect of carbon surface chemistry and texture on As removal from waters. It is required to obtain a rational view of optimal conditions to remove As from contaminated water.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2169
Author(s):  
Wei Zhu ◽  
Xueliang Jiang ◽  
Fangjun Liu ◽  
Feng You ◽  
Chu Yao

Graphene based aerogel has become one of the most likely functional adsorption materials that is applicable to purify various contaminated water sources, such as dye wastewater, because of its high porosity, structural stability, large specific surface area, and high adsorption capacity. In this study, chitosan and graphene oxide were first selected as the matrix to prepare the composite hydrogel through the hydrothermal method, which was further frozen and dried to obtain the target aerogel. The microscopic structures and adsorption capacity of the composite aerogel were then characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and N2 (nitrogen) physical adsorption and desorption tests. The results show that the specific surface area of the composite aerogel was reached at 297.431 m2/g, which is higher than that of graphene oxide aerogel and chitosan aerogel. The aperture was reduced to about 3 nm. The adsorption rate of the composite aerogel for the methyl orange solution was as high as 97.2% at pH = 1, and the adsorption capacity was 48.6 mg/g. The adsorption process of the composite aerogel satisfies the Langmuir equation and can be described by the second-order adsorption kinetics. In addition, it is worth noting that this composite aerogel can provide a striking adsorption characteristic on methyl orange due to the combining effects from massive amino groups on chitosan and the structural conjugation of graphene oxide.


2021 ◽  
Vol 15 (2) ◽  
pp. 131-144
Author(s):  
Chunjiang Jin ◽  
Huimin Chen ◽  
Luyuan Wang ◽  
Xingxing Cheng ◽  
Donghai An ◽  
...  

In this study, aspen wood sawdust was used as the raw material, and Fe(NO3)3 and CO2 were used as activators. Activated carbon powder (ACP) was produced by the one-step physicochemical activation method in an open vacuum tube furnace. The effects of different mass ratios of Fe(NO3)3 and aspen wood sawdust on the pore structure of ACP were examined under single-variable experimental conditions. The mass ratio was 0–0.4. The detailed characteristics of ACP were examined by nitrogen adsorption, scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The adsorption capacity of ACP was established by simulating volatile organic compounds (VOCs) using ethyl acetate. The results showed that ACP has a good nanostructure with a large pore volume, specific surface area, and surface functional groups. The pore volume and specific surface area of Fe-AC-0.3 were 0.26 cm3/g and 455.36 m2/g, respectively. The activator played an important role in the formation of the pore structure and morphology of ACP. When the mass ratio was 0–0.3, the porosity increased linearly, but when it was higher than 0.3, the porosity decreased. For example, the pore volume and specific surface area of Fe-AC-0.4 reached 0.24 cm3/g and 430.87 m2/g, respectively. ACP presented good VOC adsorption performance. The Fe-AC-0.3 sample, which contained the most micropore structures, presented the best adsorption capacity for ethyl acetate at 712.58 mg/g. Under the action of the specific reaction products nitrogen dioxide (NO2) and oxygen, the surface of modified ACP samples showed different rich C/O/N surface functional groups, including C-H, C=C, C=O, C-O-C, and C-N.


2021 ◽  
Vol 14 (02) ◽  
pp. 2151011
Author(s):  
Jingwen Jia ◽  
Longfu Wei ◽  
Ziting Guo ◽  
Fang Li ◽  
Changlin Yu ◽  
...  

Metal–organic frameworks (MOFs) are the electrocatalytic materials with large specific surface area, high porosity, controllable structure and monodisperse active center, which is a promising candidate for the application of electrochemical energy conversion. However, the electrocatalytic performance of pure MOFs is seriously limited its poor conductivity and stability. In this work, high-performance electrocatalyst was fabricated through combining NiFe/MOF on nickel foam (NF) via in-situ growth strategy. Through rational control of the time and ratio in reaction precursors, we realized the effective manipulation of the growth behavior, and further investigated the electrocatalytic performance in water splitting. The catalyst presented excellent electrocatalytic performance for water splitting, with low overpotential of 260 mV in alkaline condition at a current density of 50 mA[Formula: see text], which is benefited from the large specific surface area and active sites. This study demonstrates that the rational design of NiFe MOF/NF plays a significant role in high-performance electrocatalyst.


2019 ◽  
Vol 9 (23) ◽  
pp. 5249 ◽  
Author(s):  
Derlin Hsu ◽  
Changyi Lu ◽  
Tairan Pang ◽  
Yuanpeng Wang ◽  
Guanhua Wang

Chemically activated biochars prepared from sorghum distillers grain using two base activators (NaOH and KOH) were investigated for their adsorption properties with respect to ammonium nitrogen from aqueous solution. Detailed characterizations, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry (TG), and specific surface area analyses, were carried out to offer a broad evaluation of the prepared biochars. The results showed that the NaOH- and KOH-activated biochars exhibited significantly enhanced adsorption capacity, by 2.93 and 4.74 times, respectively, in comparison with the pristine biochar. Although the NaOH-activated biochar possessed larger specific surface area (132.8 and 117.7 m2/g for the NaOH- and KOH-activated biochars, respectively), the KOH-activated biochar had higher adsorption capacity owing to its much higher content of functional groups. The adsorption kinetics and isotherms of the KOH-activated biochar at different temperatures were further studied. The biochar had a maximum adsorption capacity of 14.34 mg/g at 45 °C, which was satisfactory compared with other biochars prepared using different feedstocks. The adsorption process followed pseudo-second-order kinetics, and chemical adsorption was the rate-controlling step. The equilibrium data were consistent with the Freundlich isotherm, and the thermodynamic parameters suggested that the adsorption process was endothermic and spontaneous. Consequently, this work demonstrates that chemically activated biochar from sorghum distillers grain is effective for ammonium nitrogen removal.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2362 ◽  
Author(s):  
Qinya Fan ◽  
Liqiang Cui ◽  
Guixiang Quan ◽  
Sanfei Wang ◽  
Jianxiong Sun ◽  
...  

Biochar has been studied for remediation of heavy metal-contaminated soils by many researchers. When in external conditions, biochar in soils ages, which can transform its structural properties and adsorption capacity. This study was conducted with two oxidation processes, HNO3/H2SO4 and NaOH/H2O2, to simulate the effects of biochar in acid and alkaline soil conditions. The results show that the oxygen-containing functional groups increased in aged biochar, which led to improve the ratio of oxygen and carbon (O/C). Nitro functional groups were found in the acid-oxidation treated biochar. Destroyed ditches and scars were observed on the surface of aged biochar and resulted in growth in their specific surface area and porosity. Specific surface area increased by 21.1%, 164.9%, and 63.0% for reed-derived biochar treated with water washing, acid oxidation, and basic oxidation, respectively. Greater peaks in the Fourier Transform Infrared Spectroscopy (FTIR) results were found in C–O and O–H on the surface of field-aged biochar. Meanwhile, mappings of energy-dispersive spectroscopy showed that biochar aged in soil was abundant in minerals such as silicon, iron, aluminum, and magnesium. In summary, biochar subjected to wet oxidation aging had an increased capacity to immobilize Cd compared to unaged biochar, and the adsorption capacity of oxidized biochar increased by 28.4% and 13.15% compared to unaged biochar due to improvements in porosity and an increase in functional groups.


Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 81 ◽  
Author(s):  
Reyna Ojeda-López ◽  
J. Marcos Esparza-Schulz ◽  
Isaac J. Pérez-Hermosillo ◽  
Armin Hernández-Gordillo ◽  
Armando Domínguez-Ortiz

Carbon microfibers (CMF) has been used as an adsorbent material for CO2 and CH4 capture. The gas adsorption capacity depends on the chemical and morphological structure of CMF. The CMF physicochemical properties change according to the applied stabilization and carbonization temperatures. With the aim of studying the effect of stabilization temperature on the structural properties of the carbon microfibers and their CO2 and CH4 adsorption capacity, four different stabilization temperatures (250, 270, 280, and 300 °C) were explored, maintaining a constant carbonization temperature (900 °C). In materials stabilized at 250 and 270 °C, the cyclization was incomplete, in that, the nitrile groups (triple-bond structure, e.g., C≡N) were not converted to a double-bond structure (e.g., C=N), to form a six-membered cyclic pyridine ring, as a consequence the material stabilized at 300 °C resulting in fragile microfibers; therefore, the most appropriate stabilization temperature was 280 °C. Finally, to corroborate that the specific surface area (microporosity) is not the determining factor that influences the adsorption capacity of the materials, carbonization of polyacrylonitrile microfibers (PANMFs) at five different temperatures (600, 700, 800, 900, and 1000 °C) is carried, maintaining a constant temperature of 280 °C for the stabilization process. As a result, the CMF chemical composition directly affects the CO2 and CH4 adsorption capacity, even more directly than the specific surface area. Thus, the chemical variety can be useful to develop carbon microfibers with a high adsorption capacity and selectivity in materials with a low specific surface area. The amount adsorbed at 25 °C and 1.0 bar oscillate between 2.0 and 2.9 mmol/g adsorbent for CO2 and between 0.8 and 2.0 mmol/g adsorbent for CH4, depending on the calcination treatment applicated; these values are comparable with other material adsorbents of greenhouse gases.


2020 ◽  
Vol 7 (8) ◽  
pp. 200079
Author(s):  
Yanlong Li ◽  
Hongxi Li ◽  
Rundong Li ◽  
Xin Su ◽  
Shengqiang Shen

Boron nitride, also known as white graphene, has attracted extensive attention in the fields of adsorption, catalysis and hydrogen storage due to its excellent chemical properties. In this study, a phosphorus-doped boron nitride (P-BN) material was successfully prepared using red phosphorus as a dopant for the preparation of porous boron nitride precursors. The phosphorus content in the P-BN was adjusted based on the addition rate of phosphorus. The specific surface area of P-BN first increased and then decreased with increasing addition rate of phosphorus. The maximum specific surface area was 837.8 m 2 g −1 when the phosphorus addition rate was 0.50. The P-BN prepared in the experiments was used as an adsorbent, and its adsorption capacity for heavy metals from flue gas was investigated. In particular, P-BN presented a stronger adsorption selectivity for zinc compared with other heavy metals, and its adsorption capacity for zinc was 5–38 times higher than for other heavy metals. The maximum adsorption capacity of P-BN for zinc and copper in a single heavy metal atmosphere was 69.45 and 53.80 mg g −1 , respectively.


Sign in / Sign up

Export Citation Format

Share Document