Dislocation Vector Analysis Method of Deep Dislocation Having C-Axis Segment in Diamond

2020 ◽  
Vol 1004 ◽  
pp. 519-524 ◽  
Author(s):  
Shinichi Shikata ◽  
Naoya Akashi

X-ray topography is an effective tool to investigate dislocations in semiconductor crystals. Due to low X-ray absorption coefficients of diamond, X-rays can penetrate deep into the crystal. Thus, deep three-dimensional (3D) dislocations are projected on two-dimension (2D) film, which makes dislocation analysis particularly challenging. Dislocation vectors from the films obtained using a set of the same diffraction vectors were identified using topographical and geometrical analyses. The depth and position of the dislocations in a crystal that was projected on a film were determined using geometrical relationship. The proposed analysis method was verified by analyzing several dislocations using four <404> diffraction films. The types of dislocation were identified through Burgers vector analysis.

1996 ◽  
Vol 461 ◽  
Author(s):  
R. Müller ◽  
S. Matter ◽  
P. Neuenschwander ◽  
U. W. Suter ◽  
P. Rüegsegger

ABSTRACTMicro-computed tomography (μCT) is a new and emerging technique for the nondestructive assessment and analysis of the three-dimensional trabecular bone architecture. The applications of μCT with respect to the analysis of bone are manyfold. Nevertheless, it also holds high promise for the microstructural measurement and analysis of porous biomaterials. For the purpose of the study, a desk-top μCT providing a nominal isotropie resolution of 14 μm was used. Since the polymeric material has a very low X-ray absorption coefficient, the scaffolds were stained prior to measurement using a commercial X-ray contrast agent. This allowed not only to acquire important microstructural features of the diree-dimensional scaffold but also to compute standard structural indices such as BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp and the degree of anisotropy (DA) using mean intercept length measurements. The preliminary results show that different types of scaffolds can be distinguished both qualitatively (visualization) and quantitatively (morphometry) provided an adequate X-ray staining technique is used. It can be concluded that, in the future, μCT may be of considerable help in basic as well as in applied research and development.


2006 ◽  
Vol 21 (4) ◽  
pp. 323-325 ◽  
Author(s):  
Joseph H. Reibenspies ◽  
Nattamai Bhuvanesh

Thin-walled heat-shrink poly(ethylene terephthalate) (PET) tubing is reported for use as an alternative for glass and Kapton® capillaries. PET tubing displays properties such as low X-ray absorption and smooth diffraction profiles. The 2.0 mm thin-walled (0.05 mm thick) and 0.5 mm thin-walled (0.02 mm thick) heat-shrink PET capillaries are 86% and 96% transparent to 1.54 Å X-rays. The low X-ray absorption and relatively smooth X-ray scattering profile of PET make it an ideal material for the home laboratory where the long wavelength, low flux, and low brilliance X-ray sources are employed. PET capillaries can be easily cut and manipulated and fixed to copper pins, which in turn can be employed in low-temperature and automated data collection routines.


Author(s):  
R. L. Stears

Because of the nature of the bacterial endospore, little work has been done on analyzing their elemental distribution and composition in the intact, living, hydrated state. The majority of the qualitative analysis entailed intensive disruption and processing of the endospores, which effects their cellular integrity and composition.Absorption edge imaging permits elemental analysis of hydrated, unstained specimens at high resolution. By taking advantage of differential absorption of x-ray photons in regions of varying elemental composition, and using a high brightness, tuneable synchrotron source to obtain monochromatic x-rays, contact x-ray micrographs can be made of unfixed, intact endospores that reveal sites of elemental localization. This study presents new data demonstrating the application of x-ray absorption edge imaging to produce elemental information about nitrogen (N) and calcium (Ca) localization using Bacillus thuringiensis as the test specimen.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1271
Author(s):  
Andreas Koenig ◽  
Leonie Schmohl ◽  
Johannes Scheffler ◽  
Florian Fuchs ◽  
Michaela Schulz-Siegmund ◽  
...  

The aim of the study was to investigate the effect of X-rays used in micro X-ray computer tomography (µXCT) on the mechanical performance and microstructure of a variety of dental materials. Standardised bending beams (2 × 2 × 25 mm3) were forwarded to irradiation with an industrial tomograph. Using three-dimensional datasets, the porosity of the materials was quantified and flexural strength was investigated prior to and after irradiation. The thermal properties of irradiated and unirradiated materials were analysed and compared by means of differential scanning calorimetry (DSC). Single µXCT measurements led to a significant decrease in flexural strength of polycarbonate with acrylnitril-butadien-styrol (PC-ABS). No significant influence in flexural strength was identified for resin-based composites (RBCs), poly(methyl methacrylate) (PMMA), and zinc phosphate cement (HAR) after a single irradiation by measurement. However, DSC results suggest that changes in the microstructure of PMMA are possible with increasing radiation doses (multiple measurements, longer measurements, higher output power from the X-ray tube). In summary, it must be assumed that X-ray radiation during µXCT measurement at high doses can lead to changes in the structure and properties of certain polymers.


Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


Nano Research ◽  
2021 ◽  
Author(s):  
Alevtina Smekhova ◽  
Alexei Kuzmin ◽  
Konrad Siemensmeyer ◽  
Chen Luo ◽  
Kai Chen ◽  
...  

AbstractModern design of superior multi-functional alloys composed of several principal components requires in-depth studies of their local structure for developing desired macroscopic properties. Herein, peculiarities of atomic arrangements on the local scale and electronic states of constituent elements in the single-phase face-centered cubic (fcc)- and body-centered cubic (bcc)-structured high-entropy Alx-CrFeCoNi alloys (x = 0.3 and 3, respectively) are explored by element-specific X-ray absorption spectroscopy in hard and soft X-ray energy ranges. Simulations based on the reverse Monte Carlo approach allow to perform a simultaneous fit of extended X-ray absorption fine structure spectra recorded at K absorption edges of each 3d constituent and to reconstruct the local environment within the first coordination shells of absorbers with high precision. The revealed unimodal and bimodal distributions of all five elements are in agreement with structure-dependent magnetic properties of studied alloys probed by magnetometry. A degree of surface atoms oxidation uncovered by soft X-rays suggests different kinetics of oxide formation for each type of constituents and has to be taken into account. X-ray magnetic circular dichroism technique employed at L2.3 absorption edges of transition metals demonstrates reduced magnetic moments of 3d metal constituents in the sub-surface region of in situ cleaned fcc-structured Al0.3-CrFeCoNi compared to their bulk values. Extended to nanostructured versions of multicomponent alloys, such studies would bring new insights related to effects of high entropy mixing on low dimensions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seongwook Choi ◽  
Eun-Yeong Park ◽  
Sinyoung Park ◽  
Jong Hyun Kim ◽  
Chulhong Kim

AbstractX-ray induced acoustic imaging (XAI) is an emerging biomedical imaging technique that can visualize X-ray absorption contrast at ultrasound resolution with less ionizing radiation exposure than conventional X-ray computed tomography. So far, medical linear accelerators or industrial portable X-ray tubes have been explored as X-ray excitation sources for XAI. Here, we demonstrate the first feasible synchrotron XAI (sXAI). The synchrotron generates X-rays, with a dominant energy of 4 to 30 keV, a pulse-width of 30 ps, a pulse-repetition period of 2 ns, and a bunch-repetition period of 940 ns. The X-ray induced acoustic (XA) signals are processed in the Fourier domain by matching the signal frequency with the bunch-repetition frequency. We successfully obtained two-dimensional XA images of various lead targets. This novel sXAI tool could complement conventional synchrotron applications.


1998 ◽  
Vol 4 (S2) ◽  
pp. 378-379
Author(s):  
Z. W. Chen ◽  
D. B. Wittry

A monochromatic x-ray microprobe based on a laboratory source has recently been developed in our laboratory and used for fluorescence excitation. This technique provides high sensitivity (ppm to ppb), nondestructive, quantitative microanalysis with minimum sample preparation and does not require a high vacuum specimen chamber. It is expected that this technique (MMXRF) will have important applications in materials science, geological sciences and biological science.Three-dimensional focusing of x-rays can be obtained by using diffraction from doubly curved crystals. In our MMXRF setup, a small x-ray source was produced by the bombardment of a selected target with a focused electron beam and a toroidal mica diffractor with Johann pointfocusing geometry was used to focus characteristic x-rays from the source. In the previous work ∼ 108 photons/s were obtained in a Cu Kα probe of 75 μm × 43 μm in the specimen plane using the fifth order reflection of the (002) planes of mica.


2010 ◽  
Vol 43 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Yu Kitago ◽  
Nobuhisa Watanabe ◽  
Isao Tanaka

Use of longer-wavelength X-rays has advantages for the detection of small anomalous signals from light atoms, such as sulfur, in protein molecules. However, the accuracy of the measured diffraction data decreases at longer wavelengths because of the greater X-ray absorption. The capillary-top mounting method (formerly the loopless mounting method) makes it possible to eliminate frozen solution around the protein crystal and reduces systematic errors in the evaluation of small anomalous differences. However, use of this method requires custom-made tools and a large amount of skill. Here, the development of a device that can freeze the protein crystal semi-automatically using the capillary-top mounting method is described. This device can pick up the protein crystal from the crystallization drop using a micro-manipulator, and further procedures, such as withdrawal of the solution around the crystal by suction and subsequent flash freezing of the protein crystal, are carried out automatically. This device makes it easy for structural biologists to use the capillary-top mounting method for sulfur single-wavelength anomalous diffraction phasing using longer-wavelength X-rays.


Sign in / Sign up

Export Citation Format

Share Document