Variations in the Effects of Implanting Al at Different Concentrations into SiC

2006 ◽  
Vol 527-529 ◽  
pp. 831-834
Author(s):  
Kenneth A. Jones ◽  
T.S. Zheleva ◽  
Pankaj B. Shah ◽  
Michael A. Derenge ◽  
Jaime A. Freitas ◽  
...  

SiC samples implanted at 600°C with 1018, 1019, or 1020 cm-3 of Al to a depth of ~ 0.3 μm and annealed with a (BN)AlN cap at temperatures ranging from 1300 – 1700°C were studied. Some of the samples have been co-implanted with C or Si. They are examined using Hall, sheet resistivity, CL, EPR, RBS, and TEM measurements. In all instances the sheet resistance is larger than a comparably doped epitaxial layer, with the difference being larger for samples doped to higher levels. The results suggest that not all of the damage can be annealed out, as stable defects appear to form, and a greater number or more complex defects form at the higher concentrations. Further, the defects affect the properties of the Al as no EPR peak is detected for implanted Al, and the implanted Al reduces the AlSi peak intensity in bulk SiC. CL measurements show that there is a peak near 2.9941 eV that disappears only at the highest annealing temperature suggesting it is associated with a complex defect. The DI peaks persist at all annealing temperatures, and are possibly associated with a Si terminated partial dislocation. TEM analyses indicate that the defects are stacking faults and/or dislocations, and that these faulted regions can grow during annealing. This is confirmed by RBS measurements.

2018 ◽  
Vol 924 ◽  
pp. 333-338 ◽  
Author(s):  
Roberta Nipoti ◽  
Alberto Carnera ◽  
Giovanni Alfieri ◽  
Lukas Kranz

The electrical activation of 1×1020cm-3implanted Al in 4H-SiC has been studied in the temperature range 1500 - 1950 °C by the analysis of the sheet resistance of the Al implanted layers, as measured at room temperature. The minimum annealing time for reaching stationary electrical at fixed annealing temperature has been found. The samples with stationary electrical activation have been used to estimate the thermal activation energy for the electrical activation of the implanted Al.


1993 ◽  
Vol 320 ◽  
Author(s):  
Z. Wang ◽  
Y. L. Chen ◽  
H. Ying ◽  
R. J. Nemanich ◽  
D. E. Sayers

ABSTRACTPhase formations in Co thin films (200Å in thickness) reacting with atomically clean Si(100), Ge(100), and Si0.80Ge0.20 epitaxial layer (800Å in thickness on Si(100) substrates) in UHV have been investigated. For the Co/Si system, it is found that CoSi (FeSi structure) is formed at 375°C through a very disordered CoSi phase, and the final CoSi2 phase is formed at 575°C. On the other hand, the Co5Ge7 phase was identified for the Co/Ge samples annealed at 300°C and 450°C and the final CoGe2 phase is formed at 600°C. For the Co/Si0.8 Ge0.20 samples annealed from 400°C to 600°C, Co(Si1−yGey) phases with y∼0.10 were detected, and for annealing at 700°C, only the CoSi2 phase was formed. These results indicate a preferential Co- Si reaction when annealing the Co/SiGe structure. It was also found that the sheet resistance of the reacted thin films depend strongly on annealing temperature.


2021 ◽  
Vol 22 (21) ◽  
pp. 11610
Author(s):  
Gajanan S. Ghodake ◽  
Dae-Young Kim ◽  
Surendra K. Shinde ◽  
Deepak P. Dubal ◽  
Hemraj M. Yadav ◽  
...  

We are reporting on the impact of air annealing temperatures on the physicochemical properties of electrochemically synthesized cadmium selenium telluride (CdSe0.6Te0.4) samples for their application in a photoelectrochemical (PEC) solar cell. The CdSe0.6Te0.4 samples were characterized with several sophisticated techniques to understand their characteristic properties. The XRD results presented the pure phase formation of the ternary CdSe0.6Te0.4 nanocompound with a hexagonal crystal structure, indicating that the annealing temperature influences the XRD peak intensity. The XPS study confirmed the existence of Cd, Se, and Te elements, indicating the formation of ternary CdSe0.6Te0.4 compounds. The FE-SEM results showed that the morphological engineering of the CdSe0.6Te0.4 samples can be achieved simply by changing the annealing temperatures from 300 to 400 °C with intervals of 50 °C. The efficiencies (ƞ) of the CdSe0.6Te0.4 photoelectrodes were found to be 2.0% for the non-annealed and 3.1, 3.6, and 2.5% for the annealed at 300, 350, and 400 °C, respectively. Most interestingly, the PEC cell analysis indicated that the annealing temperatures played an important role in boosting the performance of the photoelectrochemical properties of the solar cells.


1991 ◽  
Vol 240 ◽  
Author(s):  
S. J. Pearton ◽  
J. M. Kuo ◽  
W. S. Hobson ◽  
E. Hailemarian ◽  
F. Ren ◽  
...  

ABSTRACTThe activation of Si+ and Be+ ions implanted into InGaP, InGaAs or InAlAs grown by GSMBE and OMVPE was investigated as a function of ion dose and annealing temperature. Activation efficiencies close to 100% were obtained in InGaP and InGaAs for Be doses up to ∼1014 cm−2 and annealing temperatures of 700–850°C. Activation of Be was less efficient in InAlAs. By contrast, implanted Si displayed a saturation in active sheet electron densities at 1–3 × 1013 cm−2 and required higher annealing temperatures for optimum activation efficiency. High sheet resistance (≤108 μ/□) regions were created by O+ implantation into n+ InGaP or InAlAs, with hopping conduction dominating carrier transport in the bombarded material. For post-implant annealing temperatures above 750°C, the conductivity was restored to its initial value. No evidence was found for the creation of electrically active oxygen-related deep levels in either material.


2014 ◽  
Vol 806 ◽  
pp. 57-60
Author(s):  
Nicolas Thierry-Jebali ◽  
Arthur Vo-Ha ◽  
Davy Carole ◽  
Mihai Lazar ◽  
Gabriel Ferro ◽  
...  

This work reports on the improvement of ohmic contacts made on heavily p-type doped 4H-SiC epitaxial layer selectively grown by Vapor-Liquid-Solid (VLS) transport. Even before any annealing process, the contact is ohmic. This behavior can be explained by the high doping level of the VLS layer (Al concentration > 1020 cm-3) as characterized by SIMS profiling. Upon variation of annealing temperatures, a minimum value of the Specific Contact Resistance (SCR) down to 1.3x10-6 Ω.cm2 has been obtained for both 500 °C and 800 °C annealing temperature. However, a large variation of the SCR was observed for a same process condition. This variation is mainly attributed to a variation of the Schottky Barrier Height.


2011 ◽  
Vol 110-116 ◽  
pp. 1094-1098
Author(s):  
Haleh Kangarlou ◽  
Mehdi Bahrami Gharahasanloo ◽  
Akbar Abdi Saray ◽  
Reza Mohammadi Gharabagh

Ti films of same thickness, and near normal deposition angle, and same deposition rate were deposited on glass substrates, at room temperature, under UHV conditions. Different annealing temperatures as 393K, 493K and 593K with uniform 8 cm3/sec, oxygen flow, were used for producing titanium oxide layers. Their nanostructures were determined by AFM and XRD methods. Roughness of the films changed due to annealing process. The gettering property of Ti and annealing temperature can play an important role in the nanostructure of the films.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Jingwei Zhao ◽  
Tao Wang ◽  
Fanghui Jia ◽  
Zhou Li ◽  
Cunlong Zhou ◽  
...  

AbstractIn the present work, austenitic stainless steel (ASS) 304 foils with a thickness of 50 µm were first annealed at temperatures ranging from 700 to 1100 ℃ for 1 h to obtain different microstructural characteristics. Then the effects of microstructural characteristics on the formability of ASS 304 foils and the quality of drawn cups using micro deep drawing (MDD) were studied, and the mechanism involved was discussed. The results show that the as-received ASS 304 foil has a poor formability and cannot be used to form a cup using MDD. Serious wrinkling problem occurs on the drawn cup, and the height profile distribution on the mouth and the symmetry of the drawn cup is quite non-uniform when the annealing temperature is 700 ℃. At annealing temperatures of 900 and 950 ℃, the drawn cups are both characterized with very few wrinkles, and the distribution of height profile, symmetry and mouth thickness are uniform on the mouths of the drawn cups. The wrinkling becomes increasingly significant with a further increase of annealing temperature from 950 to 1100 ℃. The optimal annealing temperatures obtained in this study are 900 and 950 ℃ for reducing the generation of wrinkling, and therefore improving the quality of drawn cups. With non-optimized microstructure, the distribution of the compressive stress in the circumferential direction of the drawn foils becomes inhomogeneous, which is thought to be the cause of the occurrence of localized deformation till wrinkling during MDD.


2013 ◽  
Vol 313-314 ◽  
pp. 693-696
Author(s):  
Ji Yuan Liu ◽  
Fu Xian Zhu ◽  
Shi Cheng Ma

Cold rolled dual phase steel was developed from Q345 steel by heat treatment procedure for automotive applications. The ultimate tensile strength was improved about 100MPa higher than the traditional cold-rolled Q345 steel in the continuous annealing simulation experiment. The microstructure presented varied characteristics in different intercritical annealing temperatures; mechanical properties were changed correspondingly as well. The chief discussions are focus on the recrystallization, hardenability of austenite and martensite transformation in the experiment.


1988 ◽  
Vol 100 ◽  
Author(s):  
D. B. Poker ◽  
D. K. Thomas

ABSTRACTIon implantation of Ti into LINbO3 has been shown to be an effective means of producing optical waveguides, while maintaining better control over the resulting concentration profile of the dopant than can be achieved by in-diffusion. While undoped, amorphous LiNbO3 can be regrown by solid-phase epitaxy at 400°C with a regrowth velocity of 250 Å/min, the higher concentrations of Ti required to form a waveguide (∼10%) slow the regrowth considerably, so that temperatures approaching 800°C are used. Complete removal of residual damage requires annealing temperatures of 1000°C, not significantly lower than those used with in-diffusion. Solid phase epitaxy of Agimplanted LiNbO3, however, occurs at much lower temperatures. The regrowth is completed at 400°C, and annealing of all residual damage occurs at or below 800°C. Furthermore, the regrowth rate is independent of Ag concentration up to the highest dose implanted to date, 1 × 1017 Ag/cm2. The usefulness of Ag implantation for the formation of optical waveguides is limited, however, by the higher mobility of Ag at the annealing temperature, compared to Ti.


Sign in / Sign up

Export Citation Format

Share Document