Study on the Artificial Lightweight Aggregate by Using Reject Ash, Dredged Soil, and Ferrous Materials

2011 ◽  
Vol 695 ◽  
pp. 291-294
Author(s):  
Yoo Taek Kim ◽  
Yun Jae Choi ◽  
Chang Sub Jang ◽  
Hyun Jong Joo

The dependence of composition and sintering temperature on physical properties of ALA was investigated. Mechanism of black discoloration(sometimes called black core) usually found in the interior cores of artificial lightweight aggregate was also investigated by the optical observations. As a result, the primary cause of black discoloration in the interior of the lightweight aggregate body resulting from incomplete burn-out of carbonaceous impurities and iron-containing materials.In the cross-sectional morphology of ALA, bloating phenomena as well as formation of large pores were found in the samples containing ferrous materials. By increasing content of ferrous materials, both specific gravity and water absorption have been decreased.

2012 ◽  
Vol 174-177 ◽  
pp. 1079-1085 ◽  
Author(s):  
Si Nae Jo ◽  
Yoo Tack Kim ◽  
Seung Gu Kang ◽  
Chang Sam Kim

The artificial lightweight aggregates (ALAs) were manufactured using dredged soil produced at thermal power plant and waste catalyst slag by direct sintering method at 1050~1250°C for 10min. The ALAs of 100% dredged soil showed the black core phenomenon even at the low sintering temperature as 1050°C and become lightened by bloating pores in black core area with sintering temperature. On the other hand, the aggregates with 100% waste catalyst slag did not showed black coring and bloating phenomenon and had the low forming ability and many cracks inside. Adding the dredged soil to the waste catalyst slag decrease the specific gravity by promoting the black coring and bloating inside. The water absorption(%) of ALAs decreased with sintering temperature. The ALAs fabricated in this study showed the specific gravity of 0.8~2.0 and water absorption of 2~16% so it could be applied to various fields such as the lightweight concrete or the field of the porous carriers for purification of a contaminated soil or water.


2014 ◽  
Vol 804 ◽  
pp. 81-84
Author(s):  
Seung Gu Kang ◽  
Yong Sung Kim

Artificial aggregates (AAs) were manufactured from the acid clay (waste bentonite) and dredged soil produced at a thermal power plant by sintering at 600~1200°C for 10min. And those specimens were compared with respect to their bloating ability. The aggregates of acid clay had well-developed black core and uniform macro pores. The specific gravity of the AAs of acid clay increased with sintering temperature at 600~1000°C due to densification, but dramatically decreased at 1100°C, and at this temperature, the AAs showed bloating. The specific gravity and water absorption of the aggregates of dredged soil decreased with sintering temperature at 600~1000°C, indicating that the dredged soil has the ability to enlarge the sintering temperature range, favorable for the mass production process. The specific gravity of the AAs fabricated in this research ranged 0.8~2.0 and the water absorption ranged 4~26%, which was sufficient for various applications, such as functional membranes, light weight construction, smart soil, sound absorption and insulation fields etc..


2012 ◽  
Vol 174-177 ◽  
pp. 1450-1454
Author(s):  
Yoo Taek Kim ◽  
Seung Gu Kang ◽  
Chang Sam Kim

This research provides a comparison of ALAs which was made up of two different raw materials, that is, MDFA and MDBA which were produced from fluidized bed type boiler of power plant and then magnetically separated. ALAs made up of MDFA had too much liquid phase at high temperature; on the other hand, those made up of MDBA showed a black core region as well as good distribution of various sizes of pores inside ALA. Although a good quality of ALA can be made of MDBA only, the optimum composition was obtained under the conditions of MDBA:DS=5:5 and at 1200°C. Nonetheless for its high sintering temperature, MDBA is a prospective recycling material for making lightweight aggregate.


2012 ◽  
Vol 724 ◽  
pp. 119-122
Author(s):  
Yoo Taek Kim ◽  
Chang Sub Jang ◽  
Ki Gang Lee ◽  
Joon Seong Lee

This research concerns the characteristics of ALA made of magnetically separated desulfurized fly ash (DFA) generated from the coal power plant having fluidized bed type boiler. Being believed that these alkali-rich components could be separated by magnetic separation, desulfurized fly ash was separated by using 10,000 Gauss magnets as magnetic desulfurized fly ash (MDFA) and non-magnetic desulfurized fly ash (DFA). The dependence of composition and sintering temperature on physical property of ALA was studied. It seems to be apparent that the glass phase which is one of the main problems in the ALA manufacturing process could not be controlled by the magnetic separation only, but the formation of pores could be considerably controlled by the magnetic separation. It is also clear that neither DFA nor MDFA can be used as raw materials for making ALA; however, magnetic separation of desulfurized fly ash from fluidized bed type boiler is effective to collect bloating components for self-bloating of ALA without addition of an extra bloating agent.


2014 ◽  
Vol 6 (1) ◽  
pp. 35 ◽  
Author(s):  
Rizka Karima

There’s so many pal solid waste or palm empty fruit bunches, but the utilization is not maximized, this research its to optimized utilization of palm solid waste to be wood vinegar and want to know the composition physical properties and chemical properties of wood vinegar from palm empty fruit bunches. Total yield of wood vinegar from palm empty fruit bunches its 15,94 % and total yield of charcoal its 64,58 %. GCMS result showing chemical properties from wood vinegar of burning < 100oC its obtained 19 compound and burning >100 oC its obtained 6 compound. The result physichal properties testing from crued wood vinegar its obtained specific gravity 1,0005 and 1,0010, pH value are 3,233 and 3,186, TAT content are 9,36 % and 11,12 %, phenol content its 0,44 %. The result physical properties testing from wood vinegar which has decolorizatin by activated carbon its obtained specific gravity are 0,9987 and 0,999, pH value are 3,036 and 3,012, TAT content are 8,29 % and 9,27 % and phenol content its 0,01 %.Keywords: palm bunches, wood vinegar, liquid smoke


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


2021 ◽  
Vol 3 (2) ◽  
pp. 276-285
Author(s):  
Brigita Suzanna ◽  
Irwan Lie Keng Wong ◽  
Monika Datu Mirring Palinggi

The purpose of this research is to determine the physical properties of clay soil and to analyze the effect of adding coconut shell charcoal ash to the clay soil. The soil samples used in this study came from Tanralili District, Maros Regency, two sample points were taken and the variations in the levels of addition of coconut shell charcoal ash is 0%, 4%, 6%, 8%, 10%. The test method used refers to ASTM (American Society for Testing Materials). The tests carried out were testing the physical properties of the soil in the form of moisture content, specific gravity, Atterberg boundaries, filter analysis, and hydrometer analysis, then a compaction test was carried out to determine the maximum soil density. The results of the test obtained a moisture content value of 28.811%, a specific gravity of 2.58 g / cm3 so that it is classified as organic clay. As well as the plasticity index value of 9.926% with moderate plasticity from the 7% -17% interval. Then from the test results of soil compaction testing with the addition of coconut shell ash, the dry density (gdry) equal to 0.862, 0.886, 0.914, 0.943, 0.962, this means that the soil sample experienced an increase in dry density (gdry) of 11.60%. From the research results it can be concluded that the addition of coconut shell charcoal ash can increase the value of soil dry density so that it can be used to increase the value of the carrying capacity of clay soil.


Author(s):  
Rrahim Sejdiu ◽  
Florit Hoxha ◽  
Bujar Jashari ◽  
Lulzim Idrizi

The paper shows some physical properties of sessile oak obtained in Kosovo regions. In the study are shown: wood shrinkage, specific gravity, shrinkage coefficient for 1% change of moisture content, ratio of shrinkage in tangential and radial direction etc. The amount of volumetric shrinkage of sessile oak is 15.95%, heartwood part has an average shrinkage 15.41% in The shrinkage of sapwood part is 17.56%. Specific gravity at: wet condition: (1.013gr/cm3); 12% (0.853gr/cm3) and 0% (0.826gr/cm3) of moisture content. Specific gravity of heartwood at: wet condition (1.05gr/cm3); 12% (0.88gr/cm3); 0% (0.85gr/cm3). The specific gravity of sapwood at: wet condition (0.91gr/cm3); 12% (0.77gr/cm3); 0% (0.748gr/cm3). The ratio of average shrinkage between tangential and radial cutting direction is 1.71%. This ratio was significantly higher in sapwood than heartwood. Coefficient of shrinkage (changing 1% of moisture content) in the radial direction is 0.00196, and 0.00323 in tangential direction.  


Sign in / Sign up

Export Citation Format

Share Document