The Effect of Multiple Forging and Cold Rolling on Bending and Tensile Behavior of Al 7075 Alloy

2012 ◽  
Vol 729 ◽  
pp. 464-469 ◽  
Author(s):  
Tareg S. Ben Naser ◽  
György Krállics

This work studies the effect of multiple forging (MF), followed by cold rolling, on the tensile and bending behavior of Al 7075 alloy. The raw material was received as a rod shape. The specimens were subsequently cut and annealed at 450 °C for 30 minutes. The cylindrical specimens were subjected to MF at 250°C for three passes, then the bulk of multiple forging specimens were faced rolling at room temperature. Three different base materials were tested, raw material (as received then annealed), MF material, and rolled sheet. Hardness test, tensile test, and bending test were carried out in order to measure the mechanical properties, which are affected by the MF and cold rolling. It has been proved that the MF base specimens have higher tensile strength and better maximum elongation comparing with the raw material specimens. Rolled sheets specimens have got the highest tensile strength and lowest ductility. The result of bending test was similar to the tensile test results, beside these mechanical tests some metallographic samples were performed to help finding an explanation of this properties change.

2014 ◽  
Vol 1001 ◽  
pp. 194-198 ◽  
Author(s):  
Ľudmila Dulebová ◽  
Branislav Duleba ◽  
Aneta Krzyżak

This study presents the evaluation of selected mechanical tests of polymer composites which were re-processed. Materials Valox PBT (with 30 % glass fibre) and Celanex® 2004-2 PBT (without filler) and their regranulate were used at tests. The material PBT - regranulate PBT compositions investigated were 100/0, 80/20, 60/40, 30/70 and 0/100. Samples from PBT were prepared by injection molding and their mechanical properties were tested by tensile test and Shore hardness test. The material made from 100% recycled material compared to the baseline had a decrease in tensile strength and Shore hardness value hasn’t changed. Failure of the samples was also observed by SEM. Utilization of regranulate at the production of new moulded parts are important from aspect of reduction plastics waste and pollution abatement of environment.


Author(s):  
L. A. Ryabicheva ◽  
R. E. Velikotskii

Meeting the high requirements to the whole complex of mechanical characteristics is the main criteria of reliability and long service life of shipbuilding steels. To determine them it is necessary to apply modern methodologies of metal science analysis. Revelation of regularity of influence of alloying, carbon equivalent, microstructure and production technology on results of bending test of low-alloyed grades А32, D32, Е32 shipbuilding steels was the purpose of the study. Production of steel, rolling, thermal treatment, mechanical tests and metal science studies of the low-alloyed shipbuilding steels was made in Alchevsk steel-works. A quantity estimation of the D32 grade sheets microstructure was made as a result of studies, having both satisfactory and not satisfactory results of bending tests. It was determined, that stitch oxides have the most negative influence on the results of bending tests for both hot-rolled and normalized sheets. Sheets with not satisfactory results of bending tests differ from those, which passed the tests by higher value of streakiness points, particular of perlite, and in normalized condition – by higher value of Widmanstatten pattern. Sheets, which did not passed the tests, have yield strength by 5–25 MPa and tensile strength by 14–39 MPa higher, while the tensile strength was by 1.2–4.8% lower. For stable yield in bending tests within 98–100% it is necessary the tensile strength level to be not less than 30%. It is reasonably all the sheets of 10–20 mm thick out of heats with carbon equivalent higher 0.54% to subject compulsory normalization. Further increase of the sheets product yield can be achieved by decreasing of phosphor mass share and increasing of general steel purity, first of all, by decreasing of oxide inclusions


POROS ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Riyan Sanjaya ◽  
Eddy S Siradj

Abstract: The research was conducted because of the many industries that use CuZn 70/30 as a raw material in industrialization. CuZn 70/30 was studied to obtain the strong mechanical properties of brass. Research CuZn 70/30 was evaluated using a process of heating of about 6150 ± 50C and then held for 90 minutes. The next process is the process of cold rolling by using a variety of reduction and then tested by using a Vickers hardness testing, tensile testing, observation of the microstructure. The result of this research is a fine microstructure (below 10 μm), hardness (HV 211.67). Tensile test also conducted to get how much resistance CuZn 70/30 to resist the pull. The cold rolling process causing the decrease the mechanical properties and also increase the plastic properties of the brass. 


2016 ◽  
Vol 842 ◽  
pp. 43-52 ◽  
Author(s):  
Viktor Malau ◽  
Latif Arifudin

Vickers microindentation hardness test has been applied for a long time to determine the mechanical properties of a small volume of samples. The procedure of this hardness test consists of using a constant load on a rigid indenter and measuring the dimensions of the indenter residual impression (indentation imprint) on the surface of the sample tested after loading and unloading. The objective of this research is to characterize the mechanical properties and material constants of HQ (High Quality) 705 alloy steel mainly its VHN (Vickers Hardness Number) and tensile strength before and after quenching and tempering heat treatments. The characterization is based on Vickers microhardness dependence load curves.Quenching treatment was performed in a furnace by heating the samples at austenite temperature of 850 o C with holding time of two hours and then the samples were rapidly cooled in oil bath. Tempering processes were conducted by heating again the quenching samples to temperatures of 150, 200, 250, 300, 350, 400, 450, 500, 550 and 600 o C with holding time of two hours for each sample. Finally, all samples were slowly cooled in atmospheric temperature. The mechanical properties of samples were characterized by using Vickers microhardness dependence load curves.The results show that VHN (Vickers Hardness Number) depends on indentation load and VHN increases with increment of load for indentation load lower than 5 N. VHN is almost constant for indentation load greater than 5 N. The raw material (without heat treatment) has the VHN and tensile strength of 3413 MPa and 1050.61 MPa respectively and the quenched samples have the VHN and tensile strength of 5407 and 1861 MPa respectively. The Vickers hardness and tensile strength decrease with the increment of tempering temperatures. The higher tempering temperature produces lower hardness and tensile strength. The raw material tensile strength of 1058.8 MPa obtained by tensile test is comparable to its tensile strength of 1050.61 MPa obtained by Vickers indentation. This result indicates that Vickers microindentation is valid to use for evaluating the tensile strength of HQ 705 alloy steel.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 533 ◽  
Author(s):  
Seung Hwan Lee

When designing piping systems for various industrial facilities, carbon steel and stainless steel are widely being used. In order to satisfy design requirements in the piping systems, the two different materials are often welded in various cases. Therefore, for quality assurance, it is necessary to understand mechanical and metallurgical properties of dissimilar metal welds thoroughly. In this study, dissimilar metal welds of stainless and carbon steels were produced through the gas tungsten arc welding (GTAW) process. In the middle of the dissimilar weld, buttering welding and butt welding were manufactured using filler wires of ERNiCr-3 and ER316L. The chemical composition of the dissimilar metal weld was analyzed. Tensile test, bending test, and hardness test were additionally performed. The microstructures of the dissimilar metal weld were investigated to analyze the cracks found during the tensile test and the bending test. The metallographic behavior was analyzed in the vicinity of the cracks. The mechanism and cause of the cracks in the dissimilar metal weld were identified. As a result, the precipitates of complex carbide types were observed in segregation bands.


2013 ◽  
Vol 745-746 ◽  
pp. 298-302
Author(s):  
Ying Liu ◽  
Ruo Lin Cheng ◽  
Jing Tao Wang ◽  
He Zhang ◽  
Xin Ming Zhang

The effect of severe plastic deformation at ambient temperature on microstructures and mechanical properties of aluminum alloy 2519 was investigated by means of tensile test, micro-hardness test, optical microscopy and scanning electron microscopy. The results showed that tensile strength of as-queched 2519 alloy was greatly enhanced to nearly 550MPa (ultimate tensile strength, UTS) and 520MPa (yield strength, YS) by severe cold rolling or equal channel angular processing (ECAP) while the elongation decreased to 5%. The 2519 alloy could obtain quite well mechanical properties as much as 80 % and 12 passes cold rolling deformation. This indicated that pre-deformation by ECAP is effective in improving the mechanical properties of 2519 alloy by grain refinement, strain aging and high density dislocations.


2019 ◽  
Vol 18 (3) ◽  
pp. 297-306
Author(s):  
Cecep Slamet Abadi ◽  
Rosidi Rosidi ◽  
Idrus Assagaf

Welding technology is used because besides being easy to use, it can also reduce costs so it is cheaper. Especially for welding repair. From the welding repair the extent to which the strength of GMAW welds can repair components from the molded plastic mold room made of AISI 420 stainless steel. Repair of the print room components using deposit welding is tested using tensile strength and hardness as realization of resistance when holding the rate of liquid plastic entering the print room by 25 to 40 MPa, depending on the plastic viscosity, the precision of the mold and the filling level of the print room. Deposition welding method as a welding repair can affect a procedure to be able to produce a component that is safe and capable of being used in accordance with the provisions. The welding process used is reverse polarity GMAW DC with 125 A current and ER 70 S welding wire diameter 1.2 mm. Test material AISI 420. Tests carried out were tensile test, impact test and hardness test in weld metal, HAZ and base metal. From the Charpy impact test and tensile test obtained the value of welding strength which is close to the strength of the complete object, which is equal to 65%. The energy absorbed by the impact test object with GMAW welding is 5.4 Joule while for the whole test object is 8.1 Joule. The welding tensile strength is 520 MPa compared to the tensile tensile strength of 820 MPa.


2020 ◽  
Vol 44 (6) ◽  
pp. 421-426
Author(s):  
Ashish Kumar Srivastava ◽  
Nagendra Kumar Maurya ◽  
Manish Maurya ◽  
Shashi Prakash Dwivedi ◽  
Ambuj Saxena

The application range in defense, aerospace and automotive sectors have enabled aluminium metal matrix composites to emerge in different technological fields due to enhanced micro structural and mechanical characteristics. In the present study, friction stir processing is used to fabricate Al2024/SiC composite with one, two and three passes of the cylindrical tool. Optical microscopy and scanning electronic microscope (SEM) were used to validate the processed sample and to justify the morphological aspects. Energy dispersive spectroscopy (EDS) analysis has also performed to confirm the presence of SiC particles in the composite. It also includes the analysis of mechanical properties such as tensile strength, Rockwell hardness test and nanoindentation to characterize the prepared samples. Improvement in tensile strength with a maximum of 443 MPa, the hardness of 121 HRB and nanoindentation of the specimen was depicted through the mechanical tests.


2016 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Agostinho Francisco Pinto ◽  
Sri Murni Dewi ◽  
Devi Nurlinah

Need for the use of reinforced concrete in housing construction will increase along with the rapid population growth. This increases the need for steel reinforcement as a major component. The increase in need for steel reinforcement will trigger a price increase so that it becomes expensive and scarce. Iron ore as a raw material for making steel reinforcement is a mineral that can not be renewed. Therefore, efforts to use alternatives to steel reinforcement in concrete. Bamboo has good mechanical properties and a high ratio between strength and weight. Bamboo has a tensile strength is high, between 100-400 MPa, nearly matching the tensile strength equivalent to steel reinforcement ½ to ¼ of iron ultimate voltage (Widjaja, 2001) and (Surjokusumo and Nugroho, 1993) showed similar results and by the Moriscos, 1996 that the tensile strength of bamboo can reach 1280 kg / cm2. Bamboo can be used as the material of reinforced concrete. This study aims to determine the capacity of the bending beam with reinforcement of bamboo, bamboo reinforced beam deflection capacity. This experiment is a concrete beam bending test. The results showed that bamboo reinforced concrete beam has a maximum capacity reached 56.61% of the maximum capacity of steel reinforced concrete.


2020 ◽  
Vol 841 ◽  
pp. 254-258
Author(s):  
Yustiasih Purwaningrum ◽  
Muhammad Hafiz ◽  
Risky Suparyanto

Buckets are the most important component in backhoe construction, the bucket functions as a digger and carrier component in an excavator. Due to the heavy working media of the excavator so that this component is the most easily damaged part, damage that often occurs is wear caused by friction arising so that the thickness of the bucket is reduced which can eventually cause cracks in the bucket and in continuous use can cause the bucket to crack and broken. Cladding method is done to shorten the time or simplify the repair process is to directly patch the damaged part with a welding layer and then do the grading using a grinding. This study aims to determine the physical and mechanical properties of the material from the cladding process when compared with the raw material, the variations used are raw material, cladding with filler welding, and cladding with plates. The welding process is carried out with GMAW (Gas Metal Arc Welding) and low carbon steel. Welding results will be tested tensile strength, bending strength , impact test, hardness test, chemical composition, and corrosion rate. From the hardness test results showed that the weld metal from plate variation has the highest hardness value of 443 VHN. From the results of tensile testing the basic material has the highest value with 359.08 MPa. From the bending test results the highest value obtained from filler verification with 494.01 Mpa and the highest impact price obtained from the plate variation cladding method with a value of 1.49 J / mm2


Sign in / Sign up

Export Citation Format

Share Document