Recycling of Automotive Laminated Waste Glass in Ceramic

2014 ◽  
Vol 798-799 ◽  
pp. 588-593 ◽  
Author(s):  
Antonio H. Munhoz ◽  
Sonia Braunstein Faldini ◽  
Leila F. de Miranda ◽  
Terezinha Jocelen Masson ◽  
Claudio Yuji Maeda ◽  
...  

Reducing the environmental impact is an important factor for the sustainability of environment. This paper discusses the characterization of white ceramic bodies with an industrial waste produced in the automotive industry. The use of laminated glass residue as a raw material of a ceramic body was endeavor to make a positive impact on the environment. The laminated safety glass was ground to promote separation of glass from poly (vinilbutiral). Then, the powdered glass was used as starting material in the ceramic mass and PVB was used to confer plasticity to the ceramic mass. The fired ceramic body was analyzed using thermal analysis (DTA and TG). The specimens were tested to obtain the flexural resistance and water absorption. The data shows that PVB addition improved mechanical properties and that the grinded glass powder reduced the water absorption and increased the mechanical strength of ceramic bodies after firing.

2017 ◽  
Vol 888 ◽  
pp. 28-32
Author(s):  
Noor Asliza Ismail Adnen ◽  
Nur Atiqah Azwa Joulme Morad ◽  
Mohd Aidil Adhha Abdullah ◽  
Mohd Al Amin Muhamad Nor

The abundancy of ball clay can be transform into more useful form. This study was conducted to investigate the effect of different amount of dispersant on ceramic system. Ball clay from Kampung Dengir, Besut, Terengganu was used as starting powder while sodium silicate was used as dispersant to produce good flow ability, minimum viscosity and controllable ceramic slurry. Ceramic slurry was prepared by adding additives such as binder, flux, filler and dispersant, casted onto POP mould to obtain ceramic body. Ceramic then cut into test pieces (8cm x 2cm) and mixed for 2 h and aged for 2 days before dried at 70 °C overnight and sintered at temperature of 800-1200 °C in furnace for 2 h with heating rate 5 °C/min. Slurries also tested for rheological properties using rheometer (brand Thermo Haake). Viscosity and shear stress were measured to investigate the rhoelogical behaviour of slip with different amount of dispersant (0.03 mL to 0.06 mL/200 mL of sample). Characterization of raw samples has been done using X-ray diffractometer (XRD) showing the presence of kaolinite and quartz. Effect of dispersant on rheological behavior, rate of shrinkage, water absorption, porosity and density were investigated It was found that increase in amount of dispersant added exhibit the best rheological behavior, and 0.05 mL dispersant was the optimum amount in term of rate of shrinkage, water absorption, porosity and density. As a conclusion, 0.05 mL was the optimum dispersant which gives best rheological behavior and almost fault-free ceramic bodies


2013 ◽  
Vol 858 ◽  
pp. 88-95
Author(s):  
Phoumiphon Nordala ◽  
Mohamad Hasmaliza ◽  
Tsuyoshi Hirajima ◽  
Radzali Othman

The escalating interest of researchers to use industrial waste materials in the manufacture of ceramic products is growing. This work is aimed at studying the properties of granite waste (GW) upon incorporation in ceramic bodies. Initially, the GW was characterized in terms of chemical and mineralogical compositions. Then, the GW was added (in the range 40-60 wt.%) to a ball clay. Firing was carried out at 1100°C to1200°C and then the properties of the fired specimens were determined. The results showed that specimens with GW 50 wt.% fired at 1150°C exhibited the best properties, i.e. minimum water absorption of <0.36%, the best bulk density (2.48 g/cm3) and strength (21.34 MPa). This showed that GW can act as a fluxing agent and reduces the firing temperature of the ceramic body with additional advantages in terms of cost and reuse of waste materials.


2019 ◽  
Vol 51 (2) ◽  
pp. 223-232 ◽  
Author(s):  
Blasius Ngayakamo ◽  
Eugene Park

The present work has evaluated Kalalani vermiculite as a potential raw material for the production of high strength porcelain insulators. Three porcelain compositions were prepared to contain 0, 20 and 30 wt% of Kalalani vermiculite. Porcelain samples were fabricated using a semi-drying method. The chemical, mineralogical phases and microstructural characterization of the raw materials were carried out using XRF, XRD, and SEM techniques, respectively. Water absorption, bulk density, dielectric and bending strengths were performed on porcelain samples fired up to 1300?C. However, at the sintering temperature of 1250?C, the porcelain sample with 20 wt% of Kalalani vermiculite gave the dielectric strength of 61.3 kV/mm, bending strength of 30.54 MPa, bulk density of 2.21 g/cm3 and low water absorption value of 0.21 % which is the prerequisite properties for high strength porcelain insulators. It was therefore concluded that Kalalani vermiculite has the potential to be used for the production of high strength porcelain insulators


2021 ◽  
Vol 880 (1) ◽  
pp. 012042
Author(s):  
Z A Rahman ◽  
A S M Suhaimi ◽  
W M R Idris ◽  
T Lihan

Abstract Demand for water and energy supply has dramatically increased the amount of drinking water sludge (DW) and fly ash (FA) annually. These wastes should be properly managed and disposed to protect any potential contamination to surrounding ecosystem. Both by-products can be potentially recycled as raw material for brick development. This study aimed to examine the influence of fly ash content on mechanical properties of drinking water sludge brick at low firing temperature of 500°C. Different ratios of FA content were added to the DWS ranged between 0 and 45%. Brick sample was moulded in 215 mm x 102.5 mm x 65 mm dimension. Samples were air-dried prior to firing at 500°C for 3 hours in a furnace. Basic characterization of DW and FA showed pH of 5.76 and 10.1 with organic contents of 8.42% and 1.14%, respectively. Clay and silt fractions were dominant in DWS while silt more apparent than sand and clay in FA. The volume changes and water absorption of the brick samples decreased with increasing FA content. For the water absorption of the brick increased back as 40% of FA content. The density and compressive strength dropped with the increasing amount of FA. The compressive strength of brick experienced with sulphate attack also decreased with increasing FA content. The results suggested that further study are needed to improve the compressive strength of the studied bricks.


Respuestas ◽  
2015 ◽  
Vol 20 (1) ◽  
pp. 84 ◽  
Author(s):  
Leonardo Cely-Illera ◽  
Rafael Bolívar-León

Antecedentes: Este trabajo constituye la continuación de uno previo; en la primera parte de este trabajo se estudiaron las características mineralógicas, químicas y físicas de una arcilla del área metropolitana de San José de Cúcuta. Objetivos: En este trabajo se realizaron análisis térmicos de termogravimetria (ATG) y térmico-diferencial (ATD) para desarrollar una curva optima de cocción. Metodología: Se sinterizaron muestras extruidas y se realizó la caracterización tecnológica del mismo, ensayos de absorción de agua, resistencia mecánica y abrasión profunda, se desarrollaron. Además quemas en un horno industrial con el fin de realizar un comparativo de la curva propuesta y una curva de cocción real. Resultado: Se pudo comprobar que al usar la curva propuesta en la investigación y comparando con los resultados arrojados a nivel industrial, no solo se sacó el mejor provecho de este recurso, sino se determinó que la materia prima mejora considerablemente sus características tecnológicas, incrementando el tráfico del producto. Conclusiones: Esto significaría la posibilidad de mejores productos, generando competitividad en cualquier tipo de mercado no sólo a nivel nacional sino internacional.Abstract Background: This work is a continuation of previous one; in the first part of this work mineralogical, chemical and physical characteristics of a clay of metropolitan San José de Cúcuta was studied. Objective: In this work, thermal-differential (ATG) and Thermogravimetry analysis (ATD) were performed in order to develop an optimal firing curve. Methods: Sintering extruded samples and technological characterization of the same, testing water absorption, mechanical strength, deep abrasion and burning in an industrial furnace were performed in order to develop a comparative of the proposal ISSN 0122-820X curve and the firing real curve. Results: It was proved that using the curve given in the research and comparing it with the results obtained at industrial level, not only the most of this resource was removed, but also it was determined that raw material greatly enhances its technological characteristics, increasing traffic product. Conclusions: Which would mean the possibility of better products, generating competitive in any market not only nationally but internationally. Palabras Clave:Conformado, Desgaste, Microestructura, Propiedades Mecánicas, Sinterización.


Fluids ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 178
Author(s):  
Souhail Maazioui ◽  
Abderrahim Maazouz ◽  
Fayssal Benkhaldoun ◽  
Driss Ouazar ◽  
Khalid Lamnawar

Phosphate ore slurry is a suspension of insoluble particles of phosphate rock, the primary raw material for fertilizer and phosphoric acid, in a continuous phase of water. This suspension has a non-Newtonian flow behavior and exhibits yield stress as the shear rate tends toward zero. The suspended particles in the present study were assumed to be noncolloidal. Various grades and phosphate ore concentrations were chosen for this rheological investigation. We created some experimental protocols to determine the main characteristics of these complex fluids and established relevant rheological models with a view to simulate the numerical flow in a cylindrical pipeline. Rheograms of these slurries were obtained using a rotational rheometer and were accurately modeled with commonly used yield-pseudoplastic models. The results show that the concentration of solids in a solid–liquid mixture could be increased while maintaining a desired apparent viscosity. Finally, the design equations for the laminar pipe flow of yield pseudoplastics were investigated to highlight the role of rheological studies in this context.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 485
Author(s):  
Vera Schmid ◽  
Antje Trabert ◽  
Judith (Schäfer) Keller ◽  
Mirko Bunzel ◽  
Heike P. Karbstein ◽  
...  

Food by-products can be used as natural and sustainable food ingredients. However, a modification is needed to improve the technofunctional properties according to the specific needs of designated applications. A lab-scale twin-screw extruder was used to process enzymatically treated apple pomace from commercial fruit juice production. To vary the range of the thermomechanical treatment, various screw speeds (200, 600, 1000 min−1), and screw configurations were applied to the raw material. Detailed chemical and functional analyses were performed to develop a comprehensive understanding of the impact of the extrusion processing on apple pomace composition and technofunctional properties as well as structures of individual polymers. Extrusion at moderate thermomechanical conditions increased the water absorption, swelling, and viscosity of the material. An increase in thermomechanical stress resulted in a higher water solubility index, but negatively affected the water absorption index, viscosity, and swelling. Scanning electron microscopy showed an extrusion-processing-related disruption of the cell wall. Dietary fiber analysis revealed an increase of soluble dietary fiber from 12.6 to 17.2 g/100 g dry matter at maximum thermo-mechanical treatment. Dietary fiber polysaccharide analysis demonstrated compositional changes, mainly in the insoluble dietary fiber fraction. In short, pectin polysaccharides seem to be susceptible to thermo-mechanical stress, especially arabinans as neutral side chains of rhamnogalacturonan I.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1411
Author(s):  
José Luis P. Calle ◽  
Marta Ferreiro-González ◽  
Ana Ruiz-Rodríguez ◽  
Gerardo F. Barbero ◽  
José Á. Álvarez ◽  
...  

Sherry wine vinegar is a Spanish gourmet product under Protected Designation of Origin (PDO). Before a vinegar can be labeled as Sherry vinegar, the product must meet certain requirements as established by its PDO, which, in this case, means that it has been produced following the traditional solera and criadera ageing system. The quality of the vinegar is determined by many factors such as the raw material, the acetification process or the aging system. For this reason, mainly producers, but also consumers, would benefit from the employment of effective analytical tools that allow precisely determining the origin and quality of vinegar. In the present study, a total of 48 Sherry vinegar samples manufactured from three different starting wines (Palomino Fino, Moscatel, and Pedro Ximénez wine) were analyzed by Fourier-transform infrared (FT-IR) spectroscopy. The spectroscopic data were combined with unsupervised exploratory techniques such as hierarchical cluster analysis (HCA) and principal component analysis (PCA), as well as other nonparametric supervised techniques, namely, support vector machine (SVM) and random forest (RF), for the characterization of the samples. The HCA and PCA results present a clear grouping trend of the vinegar samples according to their raw materials. SVM in combination with leave-one-out cross-validation (LOOCV) successfully classified 100% of the samples, according to the type of wine used for their production. The RF method allowed selecting the most important variables to develop the characteristic fingerprint (“spectralprint”) of the vinegar samples according to their starting wine. Furthermore, the RF model reached 100% accuracy for both LOOCV and out-of-bag (OOB) sets.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3363
Author(s):  
Jolanta Latosińska ◽  
Maria Żygadło ◽  
Przemysław Czapik

Wastewater treatment processes produce sewage sludge (SS), which, in line with environmental sustainability principles, can be a valuable source of matter in the production of lightweight expanded clay aggregate (LECA). The literature on the influence of SS content and sintering temperature on the properties of LECA is scarce. This paper aims to statistically evaluate the effects of SS content and sintering temperature on LECA physical properties. Total porosity, pore volume, and apparent density were determined with the use of a density analyzer. A helium pycnometer was utilized to determine the specific density. Closed porosity was calculated. The test results demonstrated a statistically significant influence of the SS content on the specific density and water absorption of LECA. The sintering temperature had a significant effect on the specific density, apparent density, total porosity, closed porosity, total volume of pores, and water absorption. It was proved that a broad range of the SS content is admissible in the raw material mass for the production of LECA.


Author(s):  
Caroline J. Sartori ◽  
Graciene S. Mota ◽  
Fábio Akira Mori ◽  
Isabel Miranda ◽  
Teresa Quilhó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document