Influence of Mineral Admixtures on Fracture Energy of Refractory Cement at Elevated Temperatures

2016 ◽  
Vol 866 ◽  
pp. 88-93
Author(s):  
B. Geethakumari ◽  
R. Ramesh Kumar ◽  
V. Syam Prakash

The influence of three mineral admixtures, Silica Fume (SF), Fly Ash (FA), and Rice Husk Ash (RHA) on the fracture energy of Refractory Cement (RC) over a wide range of temperature from 300K to 1173K is studied. The optimum percentage replacement of RC by these admixtures is found to be around 0.5 for all the temperatures considered but for FA. Fracture energy of control (0% admixture) and blended RC (with 0.5% admixture) are determined by three point bending of notched beam specimens. Fracture energy of RC blended with the three mineral admixtures is lower than that of control RC for temperature range of 300K to 873K. But at elevated temperature of 1173K, blending plays its role as an admixture. Experimental results are corroborating with XRD. It is observed that phenomenon of pseudo dryness of Gismondine in the blended RC causes higher fracture energy which is double that of RC only at 1173K.

2020 ◽  
Vol 9 (1) ◽  
pp. 2405-2411

This study investigates about the behaviour of high performance concrete produced with multi component composite cements. Here, the cement is partially replaced with certain mineral admixtures. The mineral admixture used in the study are fly ash, rice husk ash, silica fume and ground granulated blast furnace slag in various percentages up to 50%. The mix proportion for fly ash and rice husk ash are kept constant thought the study as 25% and 7.5% respectively. The Mechanical properties such as (Compressive strength, split tensile strength, flexural strength and modulus of elasticity), Durability tests (Acid test, Sorptivity), permeability test and Non Destructive test are performed on M40 grade concrete cube material property, cylinder and prism. The outcomes were analyzed with the controlled mix. The results shown that the M3 mix ( 50% cement, 25% fly ash, 7.5% RHA,7.5 % silica fume and 10 % GGBS) obtained optimum strength, durability and other properties when analyzed with the other mixes.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


Author(s):  
Kavitha E ◽  
Karthik S ◽  
Eithya B ◽  
Seenirajan M

The quantity of fly ash produced from thermal power plants in India is approximately 80 million tons each year, and its percentage utilization is less than 10%. An attempt has been made to utilize these cheaper materials in concrete production. This thesis aims at investigating the characteristics of fresh concrete and various strengths of hardened concrete made with various mineral admixtures such as fly ash. GGBFS, silica fume. Rice husk ash along with polypropylene fibres in various proportions.  M20 grade concrete is considered for experimental studies with 53grade Ordinary Portland Cement blended with varying percentages of mineral admixtures. The maximum size of coarse aggregate used is 20mm.  Various mineral admixtures such as fly ash. GGBFS.Silica fume. Rice Husk Ash were added concrete in various percentages by partially replacing cement and the optimum percentage of the mineral admixtures will be found.  Based on the obtained values, the admixture with maximum mechanical strength is determined and to this polypropylene fibre is added by varying 0 to 0.5 % by weight of cement to the mix.  The test results obtained were compared and discussed with conventional concrete.


The investigative studies on mechanical performance & behaviour, of Geopolymer Concrete (GPC) before and after the exposure to elevated temperatures (of 200 0 C -1000 0 C with an increment of 100 0 C). Indicate that the GPC Specimens Exhibited better Compressive strength at higher temperatures than that of those made by regular OPC Concrete with M30 Grade. The chronological changes in the geopolymeric structure upon exposure to these temperatures and their reflections on the thermal behaviour have also been explored. The SEM images indicate GPC produced by fly ash , metakaolin and silica fume, under alkaline conditions form Mineral binders that are not only non-flammable and but are also non-combustible resins and binders. Further the Observations drawn disclose that the mass and compressive strength of concrete gets reduced with increase in temperatures.


1970 ◽  
Vol 37 (3) ◽  
pp. 765-770 ◽  
Author(s):  
A. B. Schultz

The mechanical behavior of metals subjected to uniaxial tensile impact at elevated temperatures is reported. Tests were conducted on annealed 1100 aluminum at 200, 350, 550, and 800 deg F; annealed 2024 aluminum at 200, 450, and 600 deg; and annealed C1010 steel at 430, 700, 1050, and 1400 deg F. The materials exhibit a wide range of dynamic behavior, including some in which the stress required to produce a given level of strain is significantly lowered by dynamic loading. The ratios of the dynamic ultimate stresses to the static are found to range from 0.71–6.0.


2012 ◽  
Vol 19 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Chinlai Lee ◽  
Maochieh Chi ◽  
Ran Huang

AbstractThe influence of water/cementitious material ratio, silica fume, and fly ash as partial Portland cement replacement materials on the properties, pore structure, and durability of cement-based composites was evaluated by conducting compressive strength test, mercury intrusion porosimetry test, water absorption, rapid chloride penetration test, and scanning electron microscopy (SEM). Water/cementitious material ratio, and replacement percentage of silica fume and fly ash have significant effects on the pore structure and durability of cement-based composites. Composites with silica fume or fly ash have a denser structure than the control composite on SEM micrographs. Silica fume has about 5–10 times as much effect as fly ash, according to results of multiple linear regression analyses of testing data.


2011 ◽  
Vol 71-78 ◽  
pp. 755-759
Author(s):  
Ying Tang ◽  
Guo An Wang

This paper is focused on the method for improving capability of anti-sulfate corrosion of concrete. Based on the performance characteristics of mineral admixture, propose a method that mixing concrete with complex multi-mineral admixture to improve the effect of anti-sulfate corrosion. Finally, the ability of anti-sulfate corrosion and anti-dry-wet cycle, in different case, is studied and compared. The results show that concrete mixed with complex multi-mineral admixture is advantageous to improve the anti-sulfate corrosion effects of the concrete. The proportion of mineral admixtures has significant influence on the anti-sulfate corrosion effect. As the silica fume and slag content increased, the fly ash content decreased, the ability of anti-sulfate corrosion enhanced.


Author(s):  
Aikot Pallikkara Shashikala ◽  
Praveen Nagarajan ◽  
Saranya Parathi

Production of Portland cement causes global warming due to the emission of greenhouse gases to the environment. The need for reducing the amount of cement is necessary from sustainability point of view. Alkali activated and geopolymeric binders are used as alternative to cement. Industrial by-products such as fly ash, ground granulated blast furnace slag (GGBS), silica fume, rice husk ash etc. are commonly used for the production of geopolymer concrete. This paper focuses on the development of geopolymer concrete from slag (100% GGBS). Effect of different cementitious materials such as lime, fly ash, metakaolin, rice husk ash, silica fume and dolomite on strength properties of slag (GGBS) based geopolymer concrete are also discussed. It is observed that the addition of dolomite (by-products from rock crushing plants) into slag based geopolymer concrete reduces the setting time, enhances durability and improves rapidly the early age strength of geopolymer concrete. Development of geopolymer concrete with industrial by-products is a solution to the disposal of the industrial wastes. The quick setting concrete thus produced can reduce the cost of construction making it sustainable also.


2019 ◽  
Vol 9 (9) ◽  
pp. 1049-1054
Author(s):  
Yunxia Lun ◽  
Fangfang Zheng

This study is aimed at exploring the effect of steel slag powder (SSP), fly ash (FA), and silica fume (SF) on the mechanical properties and durability of cement mortar. SSP, SF, and FA were used as partial replacement of the Ordinary Portland cement (OPC). It was showed that the compressive and bending strength of steel slag powder were slightly lower than that of OPC. An increase in the SSP content caused a decrease in strength. However, the growth rate of compressive strength of SSP2 (20% replacement by the weight of OPC) at the curing ages of 90 days was about 8% higher than that of OPC, and the durability of SSP2 was better than that of OPC. The combination of mineral admixtures improved the later strength, water impermeability, and sulfate resistance compared with OPC and SSP2. The compressive strength of SSPFA (SSP and SF) at 90 days reached 70.3 MPa. The results of X-ray diffraction patterns and scanning electron microscopy indicated that SSP played a synergistic role with FA or SF to improve the performance of cement mortar.


Sign in / Sign up

Export Citation Format

Share Document