Density Weibull Analysis of Pineapple Leaf Fibers (PALF) with Different Diameters

2016 ◽  
Vol 869 ◽  
pp. 384-390 ◽  
Author(s):  
Gabriel Oliveira Glória ◽  
Giulio Rodrigues Altoé ◽  
Pedro Amoy Netto ◽  
Frederico Muylaert Margem ◽  
Fabio de Oliveira Braga ◽  
...  

Societal, economical, technical and environmental advantages are today justifying the replacement of synthetic fibers by natural fibers. However, natural fibers obtained from plants do not present the same dimensional uniformity. In fact, they show large dispersion of values, as compared to synthetic fibers. In the case of the lignocellulosic fiber extracted from the pineapple leaf, limited information exists regarding the correlation between its properties and dimensional characteristics. In particular, so far, no investigation has been carried out on the influence of the diameter and the density of pineapple fibers. Therefore, the objective of this work was to measure the density of pineapple fibers and to define, by means of the Weibull statistic method, its dependence on the corresponding fiber diameter.

2021 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
Budiawan Sulaeman ◽  
Rakhmawati Natsir

Tujuan penelitian ini untuk menganalisis pengaruh ukuran besar diameter serat pelepah sagu terhadap sifat mekanik kekuatan tarik, menganalisis sifat mekanik tarik material komposit yang diperkuat serat pelepah sagu.Berdasarkan hasil penelitian; (1). Larutan NAoH berpengaruh terhadap kuat Tarik specimen, hal ini ditunjukkan pada 2,5% (NAoH terhadap H2O). Nilai kekuatan tariknya 49,486 N/mm2. (2). Serat pelepah sagu kuat tariknya jauh dibawah serat gelas. (48,435 N/mm2< 323 N/mm2). Hal ini disebabkan rongga yang terdapat di serat sintesis lebih rapat dibanding serat alami. (3). Berdasarkan variabel yang diteliti, kekuatan tarik (Ftu) dengan nilai tertinggi terjadi pada komposit (volume 85% matriks : 15% serat) yaitu sebesar 3,12 beban 11824 N. (4). Kekuatan tarik mengalami kenaikan terhadap peningkatan komposisi volume serat. (5). Spesimen uji yang mengalami regangan dan patah pada titik load yaitu pada komposisi volume 85% matriks : 15% serat sebesar 3,12 MPa dengan regangan sebesar 8% dan modulus young yang terjadi sebesar 38,615  MPa.The purpose of this study was to analyze the effect of the size of the sago frond fiber diameter on the mechanical properties of the tensile strength, to analyze the tensile mechanical properties of the composite material reinforced by sago frond fibers. Based on research results; (1) NaOH solution affects the tensile strength of the specimen. This is shown at 2.5% (NaOH to H2O), the tensile strength value is 49.486 N/mm2. (2) Sago frond fiber has a tensile strength far below the glass fiber (48,435 N/mm2 <323 N/mm2). This is because the cavities in synthetic fibers are denser than natural fibers. (3) Based on the variables studied, the tensile strength (Ftu) with the highest value occurs in the composite (85% matrix volume: 15% fiber), which is 3.12 load 11824 N. (4) Tensile strength increases with the increase in fiber volume composition. (5) The test specimens that experienced a strain and fracture at the load point, namely the composition of volume 85% matrix: 15% fiber was 3.12 MPa with a strain of 8% and the modulus young that occurred was 38.615 MPa.


2021 ◽  
pp. 002199832110316
Author(s):  
Nuno Gama ◽  
B Godinho ◽  
Ana Barros-Timmons ◽  
Artur Ferreira

In this study polyurethane (PU) residues were mixed with residues of textile fibers (cotton, wool and synthetic fibers up to 70 wt/wt) to produce 100% recycled composites. In addition, the effect of the type of fiber on the performance of the ensuing composites was evaluated. The presence of fibers showed similar effect on the density, reducing the density in the 5.5-9.0% range. In a similar manner, the addition of fillers decreased their thermal conductivity. The 70 wt/wt wool composite presented 38.1% lower thermal conductivity when compared to the neat matrix, a reduction that was similar for the other type of fibers. Moreover, the presence of fillers yields stiffer materials, especially in the case of the Wool based composites, which with 70 wt/wt of filler content increased the tensile modulus of the ensuing material 3.4 times. This was attributed to the aspect ratio and stiffness of this type of fiber. Finally, the high-water absorption and lower thermal stability observed, especially in the case of the natural fibers, was associated with the hydrophilic nature of fibers and porosity of composites. Overall, the results suggest that these textile-based composites are suitable for construction and automotive applications, with the advantage of being produced from 100% recycled raw-materials, without compromised performance.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 699
Author(s):  
Xiaoxiao Zhang ◽  
Leo Pel ◽  
Florent Gauvin ◽  
David Smeulders

Due to the requirement for developing more sustainable constructions, natural fibers from agricultural wastes, such as coir fibers, have been increasingly used as an alternative in concrete composites. However, the influence of coir fibers on the hydration and shrinkage of cement-based materials is not clear. In addition, limited information about the reinforcing mechanisms of coir fibers in concrete can be found. The goal of this research is to investigate the effects of coir fibers on the hydration reaction, microstructure, shrinkages, and mechanical properties of cement-based light-weight aggregate concrete (LWAC). Treatments on coir fibers, namely Ca(OH)2 and nano-silica impregnation, are applied to further improve LWAC. Results show that leachates from fibers acting as a delayed accelerator promote cement hydration, and entrained water by fibers facilitates cement hydration during the whole process. The drying shrinkage of LWAC is increased by adding fibers, while the autogenous shrinkage decreases. The strength and toughness of LWAC are enhanced with fibers. Finally, three reinforcement mechanisms of coir fibers in cement composites are discussed.


2017 ◽  
Vol 09 (04) ◽  
pp. 1750045 ◽  
Author(s):  
Yucheng Zhong ◽  
Umeyr Kureemun ◽  
Le Quan Ngoc Tran ◽  
Heow Pueh Lee

Natural fibers are extracted from natural resources such as stems of plants. In contrast to synthetic fibers (e.g., carbon fibers), natural fibers are from renewable resources and are eco-friendlier. Plant fibers are important members of natural fibers. Review papers discussing the microstructures, performances and applications of natural plant fiber composites are available in the literature. However, there are relatively fewer review reports focusing on the modeling of the mechanical properties of plant fiber composites. The microstructures and mechanical behavior of plant fiber composites are briefly introduced by highlighting their characteristics that need to be considered prior to modeling. Numerical works that have already been carried out are discussed and summarized. Unlike synthetic fibers, natural plant fiber composites have not received sufficient attention in terms of numerical simulations. Existing technical challenges in this subject are summarized to provide potential opportunities for future research.


2022 ◽  
pp. 004051752110694
Author(s):  
Hao Yu ◽  
Christopher Hurren ◽  
Xin Liu ◽  
Stuart Gordon ◽  
Xungai Wang

Comfort is a key feature of any clothing that relates significantly to softness of the fiber, yarn and fabric from which is it constructed. A known softness assessment method for fibers is the resistance to compression test. This traditional test only provides a single force value for the resistance of a loose fiber sample using a fixed mass under compression. In this research, a modified resistance to compression test was introduced to show the effects of repeated compression, providing more information about the softness and resilience of selected fibers. Three different natural fiber types, including wool, cotton and alpaca were compared using this new approach. The results showed compression profiles were quite different for different fiber types as well as for the same fibers with different diameters. While the diameters of the wool and alpaca samples were similar (18.5 μm), the modified resistance to compression values were significantly higher for wool (with a peak value at 9.5 kPa compared to 2.1 kPa for alpaca). Cotton was different from wool and alpaca but showed a similar modified resistance to compression value (10.4 kPa) to wool. During cycles of compression, modified resistance to compression peak values decreased slightly and then tended to be constant. Even though the structures of wool, cotton and alpaca were quite different, there was no significant difference in the magnitude of decline in modified resistance to compression peak values. This means that the modified resistance to compression test is able to provide additional information on the resilience characteristics of different natural fibers, and can reveal the resistance behavior of fiber samples during cyclic compression.


2016 ◽  
Vol 14 (2) ◽  
Author(s):  
Fernanda De Mello ◽  
Daruzi Felippe ◽  
Leandro C. Godoy ◽  
Nívia Lothhammer ◽  
Luis R. J. Guerreiro ◽  
...  

ABSTRACT This study aimed to evaluate muscle organization in tambaqui in order to describe the muscle growth process. We analyzed the morphometric pattern of fibers from white muscle of young-adults (300 days) by smaller diameter. The organization of white muscle exhibited a typical morphological pattern found in other fish species. Heavier animals showed higher frequency of larger diameter fibers (>50 μm ) and smaller animals had higher frequency of smaller diameter fibers (<20 μm ) (P =0.005). However, both animals showed the same frequency of intermediate diameter fibers (20-50 μm ). Body weight showed a positive correlation with muscle diameter fiber (r=0.45), being 20-50 μm the diameters that contributed the most to animal weight (P <0.0001). A weak correlation between fiber diameter and animal sex was observed (r=0.2). Females showed higher frequency of large fiber diameters (>50 μm ) than males. However, there was no difference between body weight and sex (P =0.8). Our results suggest that muscle growth is by hypertrophy and hyperplasia due to a mosaic appearance from different diameters fibers, which is characteristic of large size fish species.


Author(s):  
Gabriel O. Gloria ◽  
Giulio R. Altoé ◽  
Ygor M. Moraes ◽  
Pedro A. Netto ◽  
Frederico M. Margem ◽  
...  

Author(s):  
Marie Audouin ◽  
Nicolas Philippe ◽  
Fabien Bernardeau ◽  
Mariann Chaussy ◽  
Sergio Pons Ribera ◽  
...  

The use of bio-based material is now widespread in insulation concrete, for example hemp concrete. The bio-based materials in concrete provide many advantages: lightness, sound and thermal insulation, hydrothermal regulation while contributing to a reduction in the environmental impact due to the carbon capture during the plant growth. The development of materials incorporating plant is therefore an important objective for the construction. The next step will be to introduce bio-based materials in structural mortars and concretes. The project FIBRABETON proposes to substitute synthetic or metallic fibers by natural fibers in screed and slab. After a selection of biomass on the resources availability, separation and fractionation are the key step in processing to obtain technical natural fibers. Bulk fiber shaping and packaging methods for easy handling and transportation are tested. Then, functionalization of technical natural fibers by physical & chemical treatments to improve the durability with cement paste is carried out. The second step concerns the introduction of treated or not treated fibers in mortar and concrete formulations. The variation of the nature of the biomass, fibers shape and dosage in concrete are studied. The workability, the compressive strength and withdrawal resistance are measured in order to obtain the best formulation parameters. The evolution of properties over time is also evaluated. The project FIBRABETON is carried out with ESTP, FRD and Vicat and is subsidized by ADEME, Grand Est region and FEDER.


Author(s):  
Michelle Souza Oliveira ◽  
Fabio da Costa Garcia Filho ◽  
Fernanda Santos da Luz ◽  
Sergio Neves Monteiro

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2373 ◽  
Author(s):  
Usha Kiran Sanivada ◽  
Gonzalo Mármol ◽  
F. P. Brito ◽  
Raul Fangueiro

Multiple environmental concerns such as garbage generation, accumulation in disposal systems and recyclability are powerful drivers for the use of many biodegradable materials. Due to the new uses and requests of plastic users, the consumption of biopolymers is increasing day by day. Polylactic Acid (PLA) being one of the most promising biopolymers and researched extensively, it is emerging as a substitute for petroleum-based polymers. Similarly, owing to both environmental and economic benefits, as well as to their technical features, natural fibers are arising as likely replacements to synthetic fibers to reinforce composites for numerous products. This work reviews the current state of the art of PLA compounds reinforced with two of the high strength natural fibers for this application: flax and jute. Flax fibers are the most valuable bast-type fibers and jute is a widely available plant at an economic price across the entire Asian continent. The physical and chemical treatments of the fibers and the production processing of the green composites are exposed before reporting the main achievements of these materials for structural applications. Detailed information is summarized to understand the advances throughout the last decade and to settle the basis of the next generation of flax/jute reinforced PLA composites (200 Maximum).


Sign in / Sign up

Export Citation Format

Share Document