Abnormal Grain Growth on the Surface of Cold-Rolled AA1235 Aluminum Plate during the Annealing Process

2017 ◽  
Vol 898 ◽  
pp. 1123-1133
Author(s):  
Y.Z. Zhu ◽  
Xiao Hui Li ◽  
J.C. Li ◽  
Wei Long Fan ◽  
Cheng Wei Xia ◽  
...  

AA1235 aluminum alloys were twin roll cast into a 7.0 mm-thick billet and further rolled into a plate with 70% reduction, followed by annealing at 500 C for 8 h. Abnormal grains were found to be formed on the plate bottom surface. SEM, EBSD, and micro X-ray diffraction were used to analyze the mechanism underlying the abnormal growth of these grains. Results showed that the {100} <001> texture was formed in the surrounding normal grains adjacent to the abnormal grain. The orientation angle between the abnormal grain and its adjacent normal grains was 45°. The {100} <001> texture formed during rolling and annealing accelerated abnormal grain growth. The partially dissolved Fe precipitates were heterogeneously distributed in the plate bottom heterogeneously, which also mainly explained abnormal grain growth.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Y. Z. Zhu ◽  
H. Peng ◽  
H. Huang ◽  
J. C. Li

The twin-roller casting process is a novel technology used to produce aluminium and other alloys. In this study, the Al-Fe-Si alloy was twin-roller cast into a billet with a thickness of 7.0 mm. This was followed by an annealing process at 480°C for 16 hours. Abnormal grains of more than 15 mm in the nominal diameter were found to have formed on the surface of the billet. Scanning electronic microscopy observation, energy diffraction spectrum, microarea X-ray diffraction, and electronic backscattered diffraction analysis were performed to study this abnormal grain growth. The results showed that abnormal grain nucleates in the region of (100) <001> texture formed in the twin-roller casting process. The growth of abnormal grain was governed by the coalescence of the abnormal grain with its surrounding normal grains, with an average orientation angle of 47° between both the types of grains. High-strain-concentrated regions on the surface layer of the billet were induced by the heterogeneously distributed Fe particles formed in the twin-roller casting process. The presence of these regions accelerates the abnormal grain growth in the following annealing process of the billet.


2012 ◽  
Vol 715-716 ◽  
pp. 946-951 ◽  
Author(s):  
Dmitri A. Molodov ◽  
Nathalie Bozzolo

The effect of a magnetic field on texture and microstructure development in cold rolled (80%) commercially pure zirconium (Zr701) was investigated. X-ray diffraction and EBSD measurements were utilized for the texture and microstructure characterization. The results revealed that a magnetic field promotes grain growth in the investigated material. During annealings at 550°C this is particularly apparent from the faster development of specific (0/180, 35, 30) texture components and the bigger mean grain size after magnetic annealing. The magnetic annealing at 700°C resulted in an asymmetry of the two major texture components. This is due to a magnetic driving force for grain growth arising from the anisotropic magnetic susceptibility of zirconium. During annealing at 700°C the abnormal grain growth occurred. This behavior is attributed to the higher mobility of grain boundaries between grains misoriented by 30° around [000. The magnetic field essentially enhanced the observed abnormal grain growth.


1998 ◽  
Vol 5 (3) ◽  
pp. 1139-1140
Author(s):  
K. Kawasaki ◽  
M. Koizumi ◽  
H. Inagaki

An investigation of the primary recrystallization and the grain growth process of aluminium alloy sheets has been carried out using a method for rapid projection of the crystal grain orientation distribution. It is found that the projected pattern is continuous in the cold-rolled state. When the sheet is annealed, tiny diffraction spots or small grains appear. The addition of Mg greatly alters the sizes and number of grains, and the orientation of the grains in sheets.


2007 ◽  
Vol 561-565 ◽  
pp. 2163-2166 ◽  
Author(s):  
H.Z. Abdullah ◽  
Charles C. Sorrell

Rutile nano-powders were suspended in a solution of acetylacetone and iodine. The suspensions were electrophoretically deposited on titanium foil at a voltage range of 5-30 V over times of 5-120 s. The dried tapes then were sintered at 800°C for 2 h in flowing argon. Both the green and fired tapes were examined by field emission scanning electron microscopy, optical microscopy, X-ray diffraction, and Raman microspectroscopy. The thickness of the films depended on the voltage and the time of deposition. The sintered microstructures depended significantly on the thickness of the film, which was a function the proximity to the Ti/TiO2 interface. The interface is critical to the microstructure because it acts as the source of defect formation, which enhances sintering, grain growth, and grain facetting.


2011 ◽  
Vol 479 ◽  
pp. 54-61 ◽  
Author(s):  
Fei Wang ◽  
Ya Ping Wang

Microstructure evolution of high energy milled Al-50wt%Si alloy during heat treatment at different temperature was studied. Scanning electron microscope (SEM) and X-ray diffraction (XRD) results show that the size of the alloy powders decreased with increasing milling time. The observable coarsening of Si particles was not seen below 730°C in the high energy milled alloy, whereas, for the alloy prepared by mixed Al and Si powders, the grain growth occurred at 660°C. The activation energy for the grain growth of Si particles in the high energy milled alloy was determined as about 244 kJ/mol by the differential scanning calorimetry (DSC) data analysis. The size of Si particles in the hot pressed Al-50wt%Si alloy prepared by high energy milled powders was 5-30 m at 700°C, which was significantly reduced compared to that of the original Si powders. Thermal diffusivity of the hot pressed Al-50wt%Si alloy was 55 mm2/s at room temperature which was obtained by laser method.


1990 ◽  
Vol 202 ◽  
Author(s):  
L. H. Chou ◽  
M. C. Kuo

ABSTRACTThin Sb films have been prepared on glass substrates by rapid thermal evaporation. Films with thicknesses varied from 260 Å to 1300Å were used for the study. X-ray diffraction data showed that for films deposited at room substrate temperature, an almost random grain orientation was observed for films of 1300 Å thick and a tendency for preferred grain orientation was observed as films got thinner. For films of 260 Å thick, only two x-ray diffraction peaks--(003) and (006) were observed. After thermal annealing, secondary grains grew to show preferred orientation in all the films. This phenomenon was explained by surface-energy-driven secondary grain growth. This paper reports the effects of annealing time and film thickness on the secondary grain growth and the evolution of thin Sb film microstmctures. Transmission electron microscopy (TEM) and x-ray diffraction were used to characterize the films.


2020 ◽  
Vol 12 (9) ◽  
pp. 1409-1412
Author(s):  
Jeong-Tae Moon ◽  
Tae-Hyun Nam

The effect of annealing temperature and external stress on the thermal expansion of a Ti–23Nb–0.7Ta–2Zr alloy were investigated by means of thermal expansion tests under constant load and X-ray diffraction (XRD). Negative thermal expansion (NTE), which is a shrinkage during heating, was observed in both a cold rolled and annealed specimens. The intensity of (200)β peak decreased while that of (211)β peak increased as the annealing temperature increased. The difference in expansion rate between 50 °C and 250 °C is found to decrease with an increasing annealing temperature from 600 °C to 800 °C, above which it kept almost constant. The expansion rate decreased as the applied stress increased.


2021 ◽  
Author(s):  
Sukjin Lee ◽  
Eun Jung Seo ◽  
Robert L. Cryderman ◽  
David K. Matlock ◽  
John G. Speer

Abstract Precision cold-forging processes are used to produce near-netshape parts that may then be carburized. During carburization thermal cycles, abnormal grain growth (AGG) after cold forging is known to develop microstructures which limit fatigue strength. In the present study, a small 0.04 wt.% Nb addition was made to a low-alloyed AISI 4121 steel containing 0.3 wt.% Mo. Subcritically annealed specimens were cold rolled (to simulate cold forging) at selected reduction ratios up to 50%, heated according to a simulated gas carburizing cycle at 930 °C, and water quenched to produce a final martensitic microstructure. The number density of abnormally grown grains increased rapidly as the cold rolling reduction ratio increased from 0 to 10%. With a further increase in reduction ratio, the extent of AGG decreased and was absent in samples subjected to the maximum reduction ratio of 50%. The evolution of fine (Nb, Mo)(C,N) precipitates at various stages of processing was characterized by thermodynamic calculations and electron microscopy and compared to the occurrence of abnormal austenite grain growth. The significance of these results for controlling AGG and thus optimizing fatigue performance in commercially-produced cold-forged and carburized components is discussed.


Sign in / Sign up

Export Citation Format

Share Document